Impact of Fuel Injection Timing on Combustion Characteristics and Emissions in a Diesel Engine: A CFD Study

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran

2 Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies (AUSMT), Amol, Iran

Abstract

This study employs combined 1D and 3D computational modeling to investigate the effects of fuel injection timing on combustion and emission performance in a diesel engine. Injections are timed at a baseline angle and further adjusted by +3, –3, and –6 crank angle degrees relative to baseline. Key parameters including the in-cylinder pressure, temperature, heat-release rate, indicated work, and emission indices (NOx and soot) are compared across these cases. Results show that advancing injection timing consistently produces earlier ignition, higher peak pressure and temperature, and slightly higher indicated work and thermal efficiency, albeit with a marked increase in NOx. Conversely, retarding injection consistently lowers peak pressure and temperature, effectively reduces NOx formation, but leads to increased soot emissions and reduced efficiency. The CFD predictions leveraging an extended coherent flame model accurately replicate these observed effects. The findings highlight the inherent trade-offs in timing control: advancing injection can improve work output but aggravates NOx, while delaying injection reduces NOx at the cost of efficiency and a noticeable soot increase.

Keywords


  1. Heywood, J. B. (2018). Internal combustion engine fundamentals. McGraw-Hill Education. Columbus, United States.
  2. Ferguson, C. R., & Kirkpatrick, A. T. (2015). Internal Combustion Engines: Applied Thermosciences. Wiley, Hoboken, United States.
  3. Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12–71. doi:10.1016/j.pecs.2014.05.003.
  4. Baek, H. M., Jung, G. S., Vuong, Q. D., Lee, J. U., & Lee, J. W. (2023). Effect of Performance by Excessive Advanced Fuel Injection Timing on Marine Diesel Engine. Applied Sciences (Switzerland), 13(16), 9263. doi:10.3390/app13169263.
  5. Shuai, S., Abani, N., Yoshikawa, T., Reitz, R. D., & Park, S. W. (2009). Evaluation of the effects of injection timing and rate-shape on diesel low temperature combustion using advanced CFD modeling. Fuel, 88(7), 1235–1244. doi:10.1016/j.fuel.2009.01.012.
  6. Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19–30. doi:10.1016/j.energy.2018.05.144.
  7. Jung, D., & Assanis, D. N. (2001). Multi-zone di diesel spray combustion model for cycle simulation studies of engine performance and emissions. SAE Technical Papers. doi:10.4271/2001-01-1246.
  8. Li, J., Zhang, Z., Ye, Y., Li, W., Yuan, T., Wang, H., Li, Y., Tan, D., & Zhang, C. (2022). Effects of different injection timing on the performance, combustion and emission characteristics of diesel/ethanol/n-butanol blended diesel engine based on multi-objective optimization theory. Energy, 260, 125056. doi:10.1016/j.energy.2022.125056.
  9. Ahmed, S. A., Zhou, S., Zhu, Y., Feng, Y., Malik, A., & Ahmad, N. (2019). Influence of injection timing on performance and exhaust emission of CI engine fuelled with butanol-diesel using a 1D GT-power model. Processes, 7(5), 299. doi:10.3390/pr7050299.
  10. Kamimoto, T., & Bae, M. H. (1988). High combustion temperature for the reduction of particulate in diesel engines. SAE Technical Papers, 880423. doi:10.4271/880423.
  11. Ladommatos, N., Abdelhalim, S. M., Zhao, H., & Hu, Z. (1996). The dilution, chemical, and thermal effects of exhaust gas recirculation on diesel engine emissions-part 1: Effect of reducing inlet charge oxygen. SAE Technical Papers, 961165. doi:10.4271/961165.
  12. Aldarwish, Z., Aghkhani, M. H., Sadrnia, H., & Zareei, J. (2024). Investigation of the optimal timing and amount of fuel injection on the efficiency and emissions of a diesel engine through experimentation and numerical analysis. Heliyon, 10(19), 38790. doi:10.1016/j.heliyon.2024.e38790.
  13. Pickett, L. M., & Siebers, D. L. (2004). Soot in diesel fuel jets: Effects of ambient temperature, ambient density, and injection pressure. Combustion and Flame, 138(1–2), 114–135. doi:10.1016/j.combustflame.2004.04.006.
  14. Nehmer, D. A., & Reitz, R. D. (1994). Measurement of the effect of injection rate and split injections on diesel engine soot and NOx emissions. SAE Technical Papers, 940668. doi:10.4271/940668.
  15. Kook, S., Park, S., & Bae, C. (2008). Influence of early fuel injection timings on premixing and combustion in a diesel engine. Energy & Fuels, 22(1), 331–337. doi:10.1021/ef700521b.
  16. Mobasheri, R. (2015). Analysis the ECFM-3Z combustion model for simulating the combustion process and emission characteristics in a HSDI diesel engine. International Journal of Spray and Combustion Dynamics, 7(4), 353–372. doi:10.1260/1756-8277.7.4.353.
  17. Ruan, J., Xiao, H., Yang, X., Guo, F., Huang, J., & Ju, H. (2021). Effects of injection timing on combustion performance and emissions in a diesel engine burning biodiesel blended with methanol. Thermal Science, 25(4 Part A), 2819–2829. doi:10.2298/tsci191211202r.
  18. Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2–3), 226–236. doi:10.1016/j.applthermaleng.2005.05.006.
  19. Colin, O., Ducros, F., Veynante, D., & Poinsot, T. (2000). A thickened flame model for large eddy simulations of turbulent premixed combustion. Physics of Fluids, 12(7), 1843–1863. doi:10.1063/1.870436.
  20. Pei, Y., Hawkes, E. R., & Kook, S. (2013). Transported probability density function modelling of the vapour phase of an n-heptane jet at diesel engine conditions. Proceedings of the Combustion Institute, 34(2), 3039–3047. doi:10.1016/j.proci.2012.07.033.
  21. Wei, M., Li, S., Liu, J., Guo, G., Sun, Z., & Xiao, H. (2017). Effects of injection timing on combustion and emissions in a diesel engine fueled with 2,5-dimethylfuran-diesel blends. Fuel, 192, 208–217. doi:10.1016/j.fuel.2016.11.084.
  22. Skeen, S. A., Manin, J., & Pickett, L. M. (2015). Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames. Proceedings of the Combustion Institute, 35(3), 3167–3174. doi:10.1016/j.proci.2014.06.040.
  23. Kundu, P., Pei, Y., Wang, M., Mandhapati, R., & Som, S. (2014). Evaluation of turbulence-chemistry interaction under diesel engine conditions with multi-flamelet rif model. Atomization and Sprays, 24(9), 779–800. doi:10.1615/AtomizSpr.2014010506.
  24. Costa, M., Catapano, F., Sementa, P., Sorge, U., & Vaglieco, B. M. (2016). Mixture preparation and combustion in a GDI engine under stoichiometric or lean charge: an experimental and numerical study on an optically accessible engine. Applied Energy, 180, 86–103. doi:10.1016/j.apenergy.2016.07.089.
  25. Jafarmadar, S., Taghavifar, H., Taghavifar, H., & Navid, A. (2016). Numerical assessment of flow dynamics for various di diesel engine designs considering swirl number and uniformity index. Energy Conversion and Management, 110, 347–355. doi:10.1016/j.enconman.2015.12.035.
  26. Liu, K., Yang, J., Jiang, W., Li, Y., Wang, Y., Feng, R., Chen, X., & Ma, K. (2016). Effect of asynchronous valve timing on combustion characteristic and performance of a high speed SI marine engine with five valves. Energy Conversion and Management, 123, 185–199. doi:10.1016/j.enconman.2016.06.042.
  27. Liu, Y., Zhang, F., Zhao, Z., Dong, Y., Ma, F., & Zhang, S. (2016). Study on the synthetic scavenging model validation method of opposed-piston two-stroke diesel engine. Applied Thermal Engineering, 104, 184–192. doi:10.1016/j.applthermaleng.2016.03.094.
  28. Sadashiva Prabhu, S., Nayak, N. S., Kapilan, N., & Hindasageri, V. (2017). An experimental and numerical study on effects of exhaust gas temperature and flow rate on deposit formation in Urea-Selective Catalytic Reduction (SCR) system of modern automobiles. Applied Thermal Engineering, 111, 1211–1231. doi:10.1016/j.applthermaleng.2016.09.134.
  29. Taghavifar, H., Jafarmadar, S., Taghavifar, H., & Navid, A. (2016). Application of DoE evaluation to introduce the optimum injection strategy-chamber geometry of diesel engine using surrogate epsilon-SVR. Applied Thermal Engineering, 106, 56–66. doi:10.1016/j.applthermaleng.2016.05.194.
  30. Colin, O., & Benkenida, A. (2004). The 3-zones Extended Coherent Flame Model (ECFM3Z) for computing premixed/diffusion combustion. Oil & Gas Science and Technology, 59(6), 593–609. doi:10.2516/ogst:2004043.
  31. Hanjalić, K., Popovac, M., & Hadžiabdić, M. (2004). A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. International Journal of Heat and Fluid Flow, 25(6), 1047–1051. doi:10.1016/j.ijheatfluidflow.2004.07.005.
  32. Popovac, M., & Hanjalic, K. (2007). Compound wall treatment for RANS computation of complex turbulent flows and heat transfer. Flow, Turbulence and Combustion, 78(2), 177–202. doi:10.1007/s10494-006-9067-x.
  33. Husberg, T., Denbratt, I., Ringvik, M., & Engström, J. (2005). Heavy-duty diesel combustion with ultra-low NOx and SOOT emissions - A comparison between experimental data and CFD simulations. SAE Technical Papers. doi:10.4271/2005-01-0380.
Volume 2, Issue 4
September 2025
Pages 33-42
  • Receive Date: 06 August 2025
  • Revise Date: 24 August 2025
  • Accept Date: 31 August 2025
  • First Publish Date: 31 August 2025
  • Publish Date: 01 September 2025