SARS-CoV-2 spreading in the indoor environments

Document Type : Original Article

Authors

1 CSSB, Center for Structural Systems Biology, university of hamburg, Germany.

2 Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics

3 Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Germany

Abstract

The recent Covid-19 pandemic raises unprecedented questions regarding the spread of SARSCoV-2 virus or any other contagion disease. How long viruses remain in a room? How safe am I in a crowded room equipped with a poor ventilation system? Will an open window decrease the risk of virus transmission in public places? A deeper understanding of the drop propagation laden with viruses in confined environments is essential for controlling the recent Covid-19 pandemic and preventing the next epidemic waves. For addressing above questions, a numerical simulation of cough and propagation of the respiratory droplets is performed in this paper. Effects of air conditioner and ventilation on spreading the viruses are studied and suspension time of the aerosols and their size will be provided.
In this paper study of cough flow and the spreading of the cough droplets has been investiga ted. First the capability of the flow solver is validated by comparing the velocity field with experimental data. Then the propagation of the drops is studied.

Keywords


  • Morgenstern, J. (2020). Aerosols, Droplets, and Airborne Spread: Everything you could possibly want to know. First10EM Blog. doi:10.51684/firs.17317.
  • Yan, J., Grantham, M., Pantelic, J., Bueno de Mesquita, P. J., Albert, B., Liu, F., Ehrman, S., Milton, D. K., Adamson, W., Beato-Arribas, B., Bischoff, W., Booth, W., Cauchemez, S., Ehrman, S., Enstone, J., Ferguson, N., Forni, J., Gilbert, A., … Tellier, R. (2018). Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proceedings of the National Academy of Sciences, 115(5), 1081–1086. doi:10.1073/pnas.1716561115.
  • Asadi, S., Wexler, A. S., Cappa, C. D., Barreda, S., Bouvier, N. M., & Ristenpart, W. D. (2019). Aerosol emission and superemission during human speech increase with voice loudness. Scientific Reports, 9(1), 9 2348 ,. doi:10.1038/s41598-019-38808-z.
  • Chao, C. Y. H., Wan, M. P., & Sze To, G. N. (2008). Transport and removal of expiratory droplets in hospital ward environment. Aerosol Science and Technology, 42(5), 377–394. doi:10.1080/02786820802104973.
  • Beans, C. (2020). Fluid dynamics work hints at whether spoken word can spread COVID-19. National Academy of Sciences, Washington, United States.
  • Tellier, R. (2009). Aerosol transmission of influenza A virus: A review of new studies. Journal of the Royal Society Interface, 6(SUPPL. 6), 783– 790,. doi:10.1098/rsif.2009.0302.focus.
  • Stetzenbach, L. D., Buttner, M. P., & Cruz, P. (2004). Detection and enumeration of airborne biocontaminants. Current Opinion in Biotechnology, 15(3), 170–174. doi:10.1016/j.copbio.2004.04.009.
  • Bourouiba, L. (2016). A Sneeze. New England Journal of Medicine, 375(8), e15. doi:10.1056/nejmicm1501197.
  • Nicas, M., Nazaroff, W. W., & Hubbard, A. (2005). Toward Understanding the Risk of Secondary Airborne Infection: Emission of Respirable Pathogens. Journal of Occupational and Environmental Hygiene, 2(3), 143–154. doi:10.1080/15459620590918466.
  • Lindsley, W. G., Pearce, T. A., Hudnall, J. B., Davis, K. A., Davis, S. M., Fisher, M. A., Khakoo, R., Palmer, J. E., Clark, K. E., Celik, I., Coffey, C. C., Blachere, F. M., & Beezhold, D. H. (2012). Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness. Journal of Occupational and Environmental Hygiene, 9(7), 443–449. doi:10.1080/15459624.2012.684582.
  • Morawska, L. (2006). Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air, 16(5), 335–347. doi:10.1111/j.1600-0668.2006.00432.x.
  • Cowling, B. J., Ip, D. K. M., Fang, V. J., Suntarattiwong, P., Olsen, S. J., Levy, J., Uyeki, T. M., Leung, G. M., Malik Peiris, J. S., Chotpitayasunondh, T., Nishiura, H., & Mark Simmerman, J. (2013). Aerosol transmission is an important mode of influenza A virus spread. Nature Communications, 4. doi:10.1038/ncomms2922.
  • Kang, Z., Zhang, Y., Fan, H., & Feng, G. (2015). Numerical Simulation of Coughed Droplets in the Air-Conditioning Room. Procedia Engineering, 121, 114–121. doi:1016/j.proeng.2015.08.1031.
  • Pendar, M.-R., & Páscoa, J. C. (2020). Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough. Physics of Fluids, 32(8). doi:10.1063/5.0018432.
  • Fiegel, J., Clarke, R., & Edwards, D. A. (2006). Airborne infectious disease and the suppression of pulmonary bioaerosols. Drug Discovery Today, 11(1–2), 51–57. doi:10.1016/s1359-6446(05)03687-1.
  • Scharfman, B. E., Techet, A. H., Bush, J. W. M., & Bourouiba, L. (2016). Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets. Experiments in Fluids, 57(2), 1–9. doi:10.1007/s00348-015-2078-4.
  • Gupta, J. K., Lin, C.-H., & Chen, Q. (2009). Flow dynamics and characterization of a cough. Indoor Air, 19(6), 517–525. doi:10.1111/j.1600-0668.2009.00619.x.
  • Tölke, J. (2008). Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA. Computing and Visualization in Science, 13(1), 29–39. doi:10.1007/s00791-008-0120-2.
  • Elghobashi, S. (1994). On predicting particle-laden turbulent flows. Applied Scientific Research, 52(4), 309–329. doi:10.1007/BF00936835.
  • Maxey, M. R., & Riley, J. J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids, 26(4), 883–889. doi:10.1063/1.864230.
  • Lekien, F., & Marsden, J. (2005). Tricubic interpolation in three dimensions. International Journal for Numerical Methods in Engineering, 63(3), 455–471. doi:10.1002/nme.1296.
  • Qian, Y. H., D’Humières, D., & Lallemand, P. (1992). Lattice BGK Models for Navier-Stokes Equation. Europhysics Letters (EPL), 17(6), 479–484. doi:10.1209/0295-5075/17/6/001.
  • Yu, D., Mei, R., Luo, L.-S., & Shyy, W. (2003). Viscous flow computations with the method of lattice Boltzmann equation. Progress in Aerospace Sciences, 39(5), 329–367. doi:10.1016/s0376-0421(03)00003-4.
  • Banari, A., Gehrke, M., Janßen, C. F., & Rung, T. (2020). Numerical simulation of nonlinear interactions in a naturally transitional flat plate boundary layer. Computers & Fluids, 203, 104502. doi:10.1016/j.compfluid.2020.104502
  • Dudalski, N., Mohamed, A., Mubareka, S., Bi, R., Zhang, C., & Savory, E. (2020). Experimental investigation of far-field human cough airflows from healthy and influenza-infected subjects. Indoor Air, 30(5), 966–977. doi:10.1111/ina.12680.
  • Mohamed, A. F. A. (2017). Experimental measurements of far field cough airflows produced by healthy and influenza-infected human subjects. Master Thesis, The University of Western Ontario, London, Canada
Volume 2, Issue 1
March 2025
Pages 1-11
  • Receive Date: 09 February 2025
  • Revise Date: 10 March 2025
  • Accept Date: 17 March 2025
  • First Publish Date: 17 March 2025
  • Publish Date: 17 March 2025