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 Abstract: 

The recent COVID-19 pandemic raises unprecedented questions regarding the spread of the 

SARSCoV-2 virus or any other contagion disease. How long do viruses remain in a room? How 

safe am I in a crowded room with poor ventilation? Will an open window decrease the risk of 

virus transmission in public places? A deeper understanding of drop propagation with viruses in 

confined environments is essential to control the recent COVID-19 pandemic and prevent the 

next epidemic. To address the above questions, this paper performs a numerical simulation of 

cough and propagation of the respiratory droplets.  The effects of air conditioners and ventilation 

on spreading the viruses are studied, and the suspension time of the aerosols and their size will 

be provided. 
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1. Introduction 

At the time of writing of this article, more than 68 million 

people were COVID-19 tested positive, and 1.6 million 

deaths worldwide were reported. Because of the limitation 

of the testing, the actual cases of infected persons and 

casualties may be far beyond the official reports. Many 

countries are experiencing second or even third pandemic 

waves while we are approaching one year after the start of 

the outbreak, and again, the SARS-CoV-2 infection rate is 

increasing dramatically. Even one year after the pandemic, 

some questions remain unanswered. What is the main way 

in which the virus spreads? How safe is it to be in a closed 

environment? How do viruses spread after the infected 

person coughs? Is the recommended one-to-two-meter 

social distancing enough? 

There are three main paths of virus transmission, namely 

surface, drop, and aerosol transmission [1]. When an 

infected person breathes, talks, sneezes, or coughs, drops 

carrying viruses are emitted with a broad size distribution 

[2, 3]. The larger drops fall rapidly (up to 5 seconds) to the 

ground or on surfaces due to gravity. These drops are largely 

responsible for surface and drop transmission [4]. 

These two types of virus transmission are avoidable by 

following simple hygiene protocols such as maintaining 

social distancing and regularly washing hands and surfaces.  

On the other hand, droplets in the micron range, referred to 

as aerosols, remain suspended much longer in the air, 

typically from minutes to hours. The SARS-CoV-2 

transmission through these aerosols is still under debate. 

Bean et al. confirmed the spreading of SARS-CoV-2 via 

aerosols but did not express that these aerosols are viable 

ways to infect humans [5]. Mainly because the infection 

dose for COVID-19 is still unknown. Previous studies 

showed that some aerosols could contain enough active 

viruses to infect neighboring persons [6]. Not every aerosol 

contains active viruses. Large drops, which may contain a 

high amount of virus rapidly falling on the ground, are likely 

to contaminate. On the other hand, although only droplets 

with very small sizes will be suspended in the air for a long 

period, they are too small to contain a high dose of the virus. 

There exists, however, some intermediate size range in 

which aerosols are large enough to contain the virus and, at 

the same time, small enough to remain suspended and 

transmit the virus. Such aerosols propagate with a small 

airflow, allowing them to spread the virus over much greater 

distances [7]. In the recent COVID-19 pandemic, several 

cases reported in restaurants stated that the coronavirus was 

transmitted to people sitting even five meters away from the 

infected person. 

Coughing is one of the main symptoms of COVID-19 

disease, which plays an important role in spreading the virus 

https://cste.journals.umz.ac.ir/
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from the infected person. Studying cough has received less 

attention than sneezing. Sneeze is considered more 

important for spreading the viruses due to its higher impact 

velocity, which could throw droplets to a longer distance. 

After sneezing, the droplet can travel and land 6 to 8 m away 

[8]. It is argued that coughing/sneezing produces a turbulent 

cloud that consists of hot and moist exhaled air and drops 

that remain suspended in the cloud for a long distance. 

A cough's initial impact velocity is much lower than a 

sneeze. Nevertheless, it could produce thousands of aerosols 

that may transmit the disease even hours after the cough [9]. 

Lidslay et al. investigated cough with nine subjects with and 

without influenza [10]. They used a particle spectrometer 

with a size range of 0.35 to 10 µm. It was reported in their 

work that the number of particles in this size range varied 

widely from patient to patient and was from 900 to 302,200 

particles per cough. It will be shown in section 4 of the 

current paper that these size droplets will become aerosols 

and could d be suspended in the air for a long period. 

Aerosol transmission was observed more clearly during 

the COVID-19 outbreak in an apartment complex in Hong 

Kong. More than 300 people were reported infected. Rather 

than the random distribution you might expect from contact 

or droplets spread through common areas, residents on 

higher floors were more likely to be infected, ”consistent 

with a plume of contaminated warm air” [11]. 

Cowling et al. [12] studied the spreading of the influenza 

virus. They found that aerosol transmission accounts for 

approximately half of all transmission events. This suggests 

that reducing virus transmission by contact or large droplets 

may not be sufficient to control the virus's spreading. 

The importance of aerosol virus transmission leads to a 

more detailed study of cough as one of the main COVID-19 

diseases. In experimental cough studies, Particle Image 

Velocimetry (PIV) or Hot Wire Anemometry (HWA) are 

usually employed in a coughing person's near-mouth area or 

on a small box or point away from the mouth in a specific 

location. However, these methods fail to track the particle 

propagation in the entire room due to technical limitations 

in capturing the flow field and aerosols in the entire room. 

This brings the need for a numerical simulation. 

Kang et al. used the Lagrangian method for particle 

tracking to study coughed droplets with a size of 10µm in 

the air conditioning room [13]. 

Pendar et al. applied a comprehensive, fully coupled 

Eulerian-Lagrangian method to study the saliva-disease-

carrier droplet transmission mechanisms and track their 

trajectory using the OpenFOAM package [14]. In their 

paper, they focus mainly on sneezing rather than coughing. 

A comprehensive numerical study is investigated in the 

current work to study the cough mechanism and how the 

droplets spread in a room under different conditions. A 

computer simulation has been performed on the propagation 

of respiratory fluid aerosols following a human cough. First, 

the flow filed after the cough is validated to the existing 

experimental data. Then, the propagation of the cough 

droplets is studied. The main focus lies on the effect of 

opening the room window for virus ventilating. 

Furthermore, the dependencies of drop behavior are given 

as the function of time and size. The estimated number of 

droplets, size, and velocity have been imported from 

previous experimental studies [15, 16]. Gupta et al. [17] 

measured the flow dynamics of coughs near the mouth. 

They released a model for the time history of the cough 

velocity at the mouth and also the mouth opening area. Their 

paper reported that the jet direction and mouth opening area 

during a cough seemed not related to the physiological 

parameters of the human subjects. 

In this study, the lattice Boltzmann method is employed for 

simulating flow because of its several advantages 

concerning classical Eulerian/Navier-Stokes solvers. It 

benefits from a straightforward implementation and does 

not need pressure correction. The locality of the operators 

allows us to take full advantage of recent advances in 

parallel General Purpose Graphical Processing Units 

(GPGPU) for fast calculation [18]. A Lagrangian approach 

is used to track droplet propagation. The evaporation of the 

aerosols is neglected. Droplets' motion is governed by the 

drag of the airflow around small particles. This paper is 

organized as follows: Section 2 provides an introduction to 

particle-laden flow. Sections 2.1 and 2.2 describe particle 

tracking and fluid solver methodology. Section 3 validates 

the numerical tool with experimental data. Section 4 studies 

the spreading of the cough drops in detail. Finally, Section 

5 offers conclusions and perspectives for future work. 

2. Particle Laden Flow 

The model described by Elghobashi [19] has been used for 

simulating the particle-laden flow. In this model, the 

particle's movement happens due to the drag force of flow 

around the sphere and the amount of this force per unit 

volume exerted in the location of the particles as a feedback 

body force to the flow. The particle tracking is called the 

dispersed phase, and the fluid solver is called the carried 

phase.  The methodologies of these two solvers are 

explained below. 

2.1. Dispersed Phase 

All droplets in the dispersed phase are small rigid spheres. 

Maxey and Riley [20] made the following assumptions, 

which are also applied in our work: 

– the particles are rigid, i.e., no deformation is allowed: the 

shape and dimensions of the particles remain constant, 

– the particles are spherical, and no shape effects are 

considered. 

– the particles are really small where the particle Reynolds 

number defined by Rep = dp | upj −vpj | /ν is very small: Rep 

< 1, so that the drag coefficient for a small sphere can be 

applied, where upj is the j component of the fluid velocity 

at the location of particle p, vpj is j component velocity of 

particle p, and ν is the kinematic viscosity of the fluid. 

The governing Equation of motion for each individual 

particle is found in Newton’s second law. By neglecting the 

added mass and lift force, the Equation is 
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𝑚𝑝  
𝑑𝑣𝑗

𝑑𝑡
= 𝐷𝑝𝑗 + 𝐺𝑝𝑗 + 𝐵𝑝𝑗(𝑚𝑝 − 𝑚𝑓)𝑔𝑗  (1) 

where mp is the mass of the particle, D is the drag force, G 

is the gravity force, and B is the buoyancy force. 

The expression of the Dpj term is derived from the 

formulation of the drag force applied on a sphere by 𝐹𝑝𝑗 =
1

2
𝐶𝐷 𝐴𝑝⍴𝑓(𝑢𝑗 − 𝑣𝑗)|𝑢𝑗 − 𝑣𝑗|. 𝐴𝑝 the cross-section area of 

the particle, and CD is the drag coefficient, which is a 

function of Rep. 

𝐶𝑑 =
24

𝑅𝑒𝑃
(1 + 0.15𝑅𝑒𝑝

0.687)  (2) 

Replacing the above terms is in Equation 1, and with some 

simplification, the final form of particle motion Equation 

becomes: 

𝑑𝑣𝑗

𝑑𝑡
=

(𝑢𝑗−𝑣𝑗)

𝜏𝑝
(1 + 0.15𝑅𝑒𝑝

0.687) + 𝑔𝒋(1 −
𝜌𝑓

𝜌𝑝
) 

with 𝜏𝑝 =
𝜌𝑝𝑑𝑝

2

18𝜌𝑓𝜗
 

(3) 

In Equation 3, the upj, fluid velocity in particle position, is 

needed at every time step. However, the LB code computes 

the fluid velocity on each grid node of the domain. The 

particles being dispersed in the flow during the simulations 

may not be found on grid nodes, which is the reason why an 

interpolation must be performed to determine the fluid 

velocity at the particle positions. In our case, the fluid 

velocity field is interpolated via a tricubic interpolation 

scheme developed by Lekien and Marsden [21]. This local 

interpolation method is based on the determination of a 

64×64 matrix that relates the derivatives at the corners of an 

element to the coefficients of the tri cubic for this element 

and presents two main advantages; on one hand, it uses only 

the neighboring points of the element instead of the whole 

dataset to determine the fluid velocity, and on the other 

hand, a unique set of coefficients for the velocity 

interpolation is determined once and stored for further 

usage, which saves both time and computational resources. 

Once the carrier fluid velocity field is determined, a Taylor 

series expansion calculates the new particle velocity. 

𝑣𝑗
𝑡+1 = 𝑣𝑗

𝑡 + ∆𝑡 (
𝑢𝑗

𝑡−𝑣𝑗
𝑡

𝜏𝑝
(1 + 0.15𝑅𝑒𝑝

0.687) +

𝑔𝑗 (1 −
𝜌𝑓

𝜌𝑝
)) + 𝑂(∆𝑡2)  

(4) 

The position of the particles is then derived by time 

integration of the velocity, again via Taylor series 

expansion: 

𝑥𝑗𝑝
𝑡+1 = 𝑥𝑗𝑝

𝑡 + ∆𝑡
𝑑𝑥𝑗𝑝

𝑑𝑡 
+

1

2
 ∆𝑡2 𝑑2𝑥𝑗𝑝

𝑑𝑡2 
+

𝑂(∆𝑡3) = 𝑥𝑗𝑝
𝑡 + ∆𝑡𝑣𝑗 +

1

2
 ∆𝑡2𝑎𝑗 + 𝑂(∆𝑡3)  

(5) 

In summary, the following steps are performed to track the 

particles: Interpolation of the fluid velocity up to find its 

value at the particle's position xpj. Equations 4 and 5 are 

then used to find the particle's velocity and position in a new 

time step. Subsequently, the term Fpj, s is extrapolated to 

the neighboring grid node and inserted as the particle's 

feedback effect to the fluid solver. 

2.2. Carrier Phase 

An efficient implementation of the Lattice Boltzmann 

Method is used within this study for the numerical 

simulation of the fluid flow. The LBM is based on the 

Boltzmann equation from a microscopic scale point of view. 

The LBM then discretizes the Boltzmann equation with a 

discrete velocity set, yielding a numerical method for 

computing macroscopic distribution functions on a 

Cartesian grid. The macroscopic hydrodynamic quantities, 

such as pressure and velocity, are obtained as low-order 

moments of these distribution functions. It can be shown 

that for sufficiently small values of space and time steps, 

Mach (Ma) and Knudsen (Kn) numbers, the LBM solution 

converges to that of the NS Equations. 

The Boltzmann equation thus governs particle distribution 

functions (PDF), f(x,t,ξ), which specify the probability of 

finding a fluid particle at position x at time t with (particle) 

velocity ξ, [22, 23]. The Boltzmann equation is 

𝜕𝑓(𝑥,𝑡,𝜉)

𝜕𝑡
+ ξ ·

𝜕𝑓(𝑥,𝑡,𝜉)

𝜕𝑥
= Ω (6) 

Ω is the collision operator, which describes the interaction 

of particles. 

Discretized particle velocities eijk are introduced to yield a 

model of reduced computational cost. In this discretized 

formulation, a particle is only allowed to move from a given 

lattice point in a limited number of directions and for 

specific distances. With these assumptions, Equation 6 

transforms into a set of discrete Boltzmann Equations 

𝜕𝑓𝑖𝑗𝑘(𝑥,𝑡)

𝜕𝑡
+𝑒𝑖𝑗𝑘 . 

𝜕𝑓𝑖𝑗𝑘(𝑥,𝑡)

𝜕𝑥
= Ωijk (7) 

where eijk = c×(i,j,k) and i,j,k ∈ (−1,0,1). c = ∆x/∆t is the 

lattice speed, with ∆x being the regular lattice space step and 

∆t the time step. In the implementation of LBM, c usually 

gets a unity value. This means that a particle with velocity c 

will travel one lattice cell within a discrete time step. The 

definition of eijk will form a lattice with 27 discretized 

velocities, which is called the D3Q27 model (3 dimensional 

and 27 velocities, see Figure 1). 

 

Figure 1. D3Q27 lattice model used in the present LBM, 

where the vectors indicate the 27 possible velocity vectors 

A finite difference discretization in space and time over a 

grid cell yields the lattice Boltzmann Equation 
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fijk(x + eijk∆t,t + ∆t) = fijk(x,t) + ∆tΩijk (8) 

Equation 8 may be split up into two parts. The first part 

contains the collision step, in which the particle distribution 

functions change from the equilibrium state due to the 

collision of the particles. The second part is the propagation 

step, in which the evolved particle distribution functions are 

moved to the respective neighboring grid points. The 

collision step is a complete local operator, and this LBM 

characteristic makes the numerical method highly suitable 

for taking advantage of GPGPU for high-performance 

computing. 

f¯ijk(x,t) = fijk(x,t) + Ωijk  Collision step (9) 

fijk(x + eijk∆t,t + ∆t) = f
¯

ijk(x,t) Propagation step (10) 

where f¯
ijk is the post-collision particle distribution function. 

A new model called the cumulant lattice Boltzmann 

equation has been used for the collision operator. The 

cumulant method has crucial advantages compared to other 

LBM collision operators, e.g., MRT, TRT, and BGK. The 

cumulant operator is Galilean invariant. Moreover, it is 

more stable and produces smaller errors and noises. Banari 

et al. [24] comprehensively explain the cumulant method. 

The pressure and velocities are obtained from the zeroth and 

first-order moments of the particle distribution functions. 

p =cs
2 ∑ fijk

1
i=−1 , (11) 

u =
1

𝜌
∑ 𝑓𝑖𝑗𝑘 

1
𝑖=−1 𝑒𝑖𝑗𝑘 ∑ 𝑓𝑖𝑗𝑘

1
𝑗=−1 𝑒𝑖𝑗𝑘 ∑ 𝑓𝑖𝑗𝑘

1
𝑘=−1 𝑒𝑖𝑗𝑘  (12) 

where cs = c/ √3 is the speed of sound in the lattice. 

2.3. Grid Refinement 

In the simulation of the cough, high grid resolution is 

needed for areas close to the mouse where high gradients 

exist. The memory of one single GPU for running the 

current simulation is not enough due to a large number of 

grid points. The current work has been run on the 

Helmholtz-Zentrum Dresden-Rossendorf (HZDR) high-

performance computing cluster “Hemera” with Tesla P100 

GPU. This GPU has 16 GB of memory on 2880 CUDA 

cores. To overcome this problem, a grid refinement 

technique is implemented at a high gradient area where 

more resolution is needed. The grid size of fine mesh is half 

of the grid size of coarse mesh ∆xc = 2∆xf, which means that 

the time step in the coarse patch is twice the time step in the 

fine patch (∆tc = 2∆tf). Therefore, the fine patch should be 

solved in two time steps to reach to the same time level as 

the coarse patch after one time step. After the end of one 

coarse patch time step (two fine patch time steps), some 

missing particle distribution functions must be updated. 

These nodes are colored red in Figure 2. An interpolation 

scheme has to be applied to the fine-coarse boundary. The 

inner coarse nodes, big red nodes in Figure 2, are updated 

by averaging the neighboring fine nodes and unknown fine 

patch PDFs, and small red nodes in Figure 2 are found by a 

tri-linear interpolation. 

After finding the values of fine (coarse) patch PDFs on the 

position of unknown coarse (fine) nodes, scaling of non-the 

equilibrium part is necessary to find the final magnitudes of 

 

Figure 2. Invalid and valid nodes in fine and coarse grids. red 

(invalid), blue (valid) 

unknown PDFs. The equilibrium part of PDFs for the fine 

and coarse patches are only functions of hydrodynamic 

parameters and are the same in both grids. Therefore, the 

unknown PDFs are calculated with 

𝑓𝑖,𝑐 = 𝑓𝑖,𝑓
𝑒𝑞

+ 𝑟𝑓𝑖,𝑓
𝑛𝑒𝑞

  (13) 

𝑓𝑖,𝑓 = 𝑓𝑖,𝑐
𝑒𝑞

+
1

𝑟
𝑓𝑖,𝑐

𝑛𝑒𝑞
  (14) 

where fi,c and fi,f are missing PDFs in coarse and fine grid, 

respectively. In the Equation above, r is the scale factor 

coefficient between non-equilibrium PDFs of fine and 

coarse grids, which is defined as 

r=
𝜗𝑓(6𝜗𝐶+1)

𝜗𝑐(6𝜗𝑓+1)
 (15) 

where νf and νc are the fluid viscosity in lattice Boltzmann 

units for fine and coarse mesh, respectively. More details 

concerning the derivation of the scale factor can be found 

by Dudalski et al. [25]. 

3. Comparison to the Experimental Data 

In order to check the capability of the numerical fluid 

solver for the simulation of the human cough, a comparison 

to the experimental work of Dudalski et al. [25] is 

performed in this section. Dudalski et al. [25] conducted 

Particle image velocimetry (PIV) and hot-wire anemometry 

(HWA) measurements at 1 m away from the mouth of 

human subjects. They developed a model for cough flow 

behavior at the far field location of the mouth, which is 

important for the post-cough spreading of the cough 

droplets. In their work, they only recorded the time history 

of the cough velocity field, and the cough drop propagation 

was not investigated (which is studied in the current work 

and is discussed in section 4). Cough velocity and duration 

are highly case-sensitive. It may vary by age, gender, and 

health condition of the coughing person. Dudalski et al. [25] 

performed 77 experiments with 58 different subjects, and 

the average of all recorded velocity fields is considered the 

final cough velocity field model. 

It must be stated that in the experimental tests, although the 

human subject was required to cough horizontally, there was 

still a small angle in the cough jet flow direction. Dudalski 
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et al. defined the “cough jet center line” as the midpoint of 

the cough, where the greatest velocities are present. The 

“cough jet center line” is found after examining and 

averaging the velocity contours and vector arrays of all 

trials. However, for the numerical simulation, since the 

direction of the inlet velocity is set in the horizontal 

direction, the “cough jet center line” is a horizontal line 

from the mouth. 

The computational domain that is used for the cough 

simulations in this work is sketched in Figure 3-a. The 

numerical chamber dimension is 1.8 × 1.2 × 1.4 in x,y and z 

directions. This dimension is used to minimize the effect of 

the wall on the cough. A no-slip boundary condition is used 

at all the surfaces except the location of the mouse, where 

the inlet velocity boundary condition is used. The fine grid 

is located from the mouth to 1.2m away from it, where the 

majority of cough propagation and high gradients take 

place. The grid dimensions and fine and coarse grid setup 

are illustrated in Figure 3-b. Grid nodes of Nx = 413, Ny = 

229, and Nz = 308 for the coarse grid and nx = 546, ny = 

136, and nz = 136 for the fine grid are used. This grid setup 

gives ∆xc = 0.004393m and ∆xf = 0.002197m for coarse and 

fine grid spacing, respectively. For the inlet velocity in the 

mouth, the velocity profile and also the mouth size 

suggested by Gupta et al. [17] are used. Gupta et al. [17] 

determined experimentally, with several cases, the average 

cough flow rate and also mouth size during the cough. The 

mouth is considered to be circular, with a radius of d = 

0.012. This radius is set to be in the range of the calculated 

average mouth size proposed by Gupta et al. [17]. Using this 

mouth size, the cough velocity at the mouth will be 

calculated from the flow rate, which is illustrated in Figure 

4 as a function of the time. This cough velocity profile 

shows a duration of around 0.6 seconds and a maximum 

velocity of vmax ∼= 22m/e.

  
(a) (b) 

Figure 3. (a) Schematic view of computational chamber dimensions, (b) Fine (gray box) and coarse grid placement in the 

computational grid 

 

Figure 4. Cough flow rate variation with time from [17] 

The LBM cough simulation is validated by comparing it to 

the HWA data from Dudalski et al. [25]. Figure 5-a 

compares LBM and HWA normalized velocity profiles as 

the function of normalized time at the location of point A, x 

= 1m from mouth on jet cough center line (x = 1m ,y = 0,z = 

0.67m) (see Figure 3-a). The normalized velocity V and the 

normalized time t are defined: 

𝑉 =
𝑉(𝑡)

𝑉𝑝𝑒𝑎𝑘
 𝑎𝑛𝑑 𝑡 =

𝑡

𝑡𝑝𝑒𝑎𝑘
  (16) 

where V (t) =√𝑢𝑥
2 + 𝑢𝑧

2 is 2D instantaneous velocity 

magnitude at point A. Vpeak is the maximum velocity V (t), 

and tpeak is the time t at which Vpeak occurs. 

The date of HWA is the average of 72 records. Also, for the 

LBM results, the profile is the average of 6 simulations with 

small random perturbation in the inlet velocity to mimic the 

randomness of the cough. Very good agreement is observed 

between the numerical and the experimental results, which 

shows the capability of the LBM to capture the cough flow. 

Moreover, in Figure 5-b, the 2D velocity magnitude is 

0.3 0.4 0.5 0.6 0 0.1 0.2 
0 

5 

10 

15 

20 
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illustrated as the function of time. The peak velocity of Vpeak 

= 0.94m/s is seen in this Figure, which is slightly lower than 

the average peak velocity Vpeak = 1.17m/s reported by 

Dudalski et al. [25]. 

Figure 6 compares instantaneous velocity magnitude 

contours to Mohamed's PIV measurements [26].  

  
t[−] t[s] 

(a) (b) 

Figure 5. (a)Normalized Velocity at point A and its comparison to the experimental data of Mohamed [26], LBM result ( ), 

experimental data (), (b) Numerical 2D velocity magnitude at point A 

 

Figure 6. Comparison of instantaneous velocity magnitude to the PIV measurements of Mohammad et al. 

The experimental chamber setup of Mohamed [26] is the 

same as Dudalski et al. [25]. The PIV velocity contours are 

computed in a rectangular field view with the dimension of 

0.14cm by 0.34cm around the cough jet center line. The 

noises at the lower right corner of the field of view of PIV 

measurements are affected by camera malfunction. This 

comparison shows qualitatively the effectiveness of the inlet 

velocity boundary condition and the numerical simulation. 

The cough jet enters the field view at 0.6 seconds, and the 

maximum velocity and counters match the PIV data.  

Furthermore, the instantaneous velocity magnitude in the 

whole domain is shown in Figure 7, and the spread of the 

cough early after the impact is illustrated in Figure 8. These 

figures help to provide a better understanding of the 

dynamics of the cough. In Figure 7, for the times t = 2,3,4s, 

a high-velocity pocket can be observed at the front of the jet 

that separates it from the rest of the jet. This high-velocity 

pocket contains the main energy of the cough while the rest 

of the jet speed decays in the early stage. This incident was 

also observed in some experimental works in which a high-
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speed cloud containing thousands of drops was observed. 

This cloud is responsible for spreading the virus much 

further than expected. More details about this phenomenon 

are explained in section 4.

 

Figure 7. Instantaneous velocity magnitude of the cough jet 

 

 
t=0.3s t=0.6s 

  
t=1.5s t=2.5s 

Figure 8. Drops spreading early after the cough

4. Cough Drops Spreading in a Room 

This section carries out a numerical simulation of the 

cough spreading in a room to investigate the virus spreading 

in a confined environment. 

The room size is 5m × 2.6m × 2.6m. A person with a height 

of 1.75cm is standing next to the wall. Gupta cough velocity 

is implemented. Four thousand particles are inserted into the 

mouse with random diameter sizes in the range of 7µm to 

100µm. Also, an air conditioner blows at a very low speed 

in the room. Although the AC speed is low, it is high enough 

to spread the small droplets throughout the room. 

For the first study, the average size of the droplets falling 

on the ground and the horizontal spreading quickly after the 

cough are investigated. In the left panel of Figure 9, droplets 

are projected on an x−z plane, and their 2D velocity vector 

is illustrated. In the right panel of Figure 9, the average size 
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of particles falling on the ground as the function of 

horizontal distance from the mouth is plotted. For the time t 

= 5sec, particles with a diameter around d = 9.4µm fell on 

the ground up to a distance of x = 1.6m away from the 

mouth. For the time t = 10,20,40sec, particles fell on the 

ground up to a distance of x = 1.8,2.0,2.2m away from the 

mouth, respectively. Moreover, from the left panel of Figure 

9, the maximum horizontal spreading of the cough drops 

can be observed. For the time t = 5,10,20,40 sec, drops 

travel up to a distance of x = 2.1,2.5,3.0,3.5m away from the 

mouth. 

 

 

 

 

Figure 9. On the left panel, Cough drops a 2D velocity vector in an x-z plane. On the right panel, the average size of the drops 

deposited on the ground with respect to the horizontal distance to the mouth

Bourouiba reported that after the sneeze, a turbulent cloud 

is formed, and the smaller droplets are trapped in the 

turbulent puff cloud, remain suspended, can travel the 

dimensions of a room, and land up to 6 to 8 m away. Figure 

10 shows that the same phenomenon occurs for the cough. 

At the tip of the cough jet, a semi-spherical cloud is formed, 

and thousands of smaller particles are trapped inside it. 

These particles rotate around the center of the cloud while 

moving forward and expanding. The high streamwise 

velocity of this cloud leads to its separation from the heavier 

droplets that are falling. This rotating cloud can travel up to 

5 meters and hit the front wall. This phenomenon challenges 

the 1-2 meter recommended social distancing if two persons 

stay in front of each other for some time. In Figure 9, it is 

seen that for a time higher than only 10 seconds, the cough 

drops travel more than 2.5 meters. This observation brings 

a reconsideration for social distancing in a situation where 

people have interacted with others for a longer time, such as 

being in a meeting or waiting room. 

In the second study, the spreading of the virus in a confined 

room is investigated. Two scenarios are studied. For case 

(1), the room is completely confined by the walls, and there 

is no ventilation. In case (2), there is an open window that 

could ventilate the aerosols out of the room. Table 1 and 

Figure 11 compare the percentage of cough drops on the 

ground, in the air, and ventilated through the windows for 

the open and closed windows for 5 minutes after the cough. 
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For the completely closed room (no window), about 93% of 

the droplets deposit on the ground, but about 7% of total 

particles remain in the air even 5 minutes after the cough. 

By opening the window, the drops start to get ventilated out 

of the windows 50 seconds after the cough. Two minutes 

after the cough, almost all droplets have been ventilated 

(Figures 11 and 12), and there are no drops remaining in the 

air. Figure 13 shows the cough drops spreading and 

ventilating in a room with an open window. It is seen that 

only one minute after the drop, the small droplets (d < 20µ) 

have become aerosols, and the low airflow due to the AC 

circulates these aerosols in the entire room. But these 

aerosols slowly exit through the window, and after five 

minutes, very few remain in the room. This comparison 

shows the dangers of staying in a room with a closed 

window and no ventilation. Public places such as doctor 

waiting rooms, work meetings, hair salons, and many other 

places where people need to stay with others for a long 

period of time in confined rooms could potentially be high-

risk areas, and it is crucial to keep the windows open for 

ventilation of the respiratory droplets.

  
(40sec) (50sec) 

  
(60sec) (80sec) 

Figure 10. Trapped particles in the cloud of the flow 

Table 1. Comparison of cough drops percentages landed on the ground, suspended in the air and ventilated through the window 

Particle Percentage On The Ground In The Air Ventilated Through The Window 

Window closed 93.3 6.7 - 

Window open 86.3 0.97 12.7 

 

 
(a) (b) 

Figure 11. (a) Percentage of the number of drops floating in the room ( ), deposited on the ground ( ) and ventilated through the 

window( ) with respect to the total number of cough drops, (b) No window, Open window 
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Figure 12. Percentage of the number of drops floating in the room ( ) and ventilated through the window( ) 

withrespecttosummationofdropsfloatinginroomandventilatedthroughthewindow 

  
(a) 5 Second (b) 1 Minute 

  
(c) 3 Minutes (d) 3 Minutes 

Figure 13. Aerosols spread and ventilate in a room with an open window; droplets are colored by their size

5. Conclusion 

In this paper, the study of cough flow and the spreading of 

cough droplets have been investigated. First, the capability 

of the flow solver was validated by comparing the velocity 

field with experimental data. Then, the propagation of the 

drops was studied. It was found that the droplets could 

spread far beyond the social distancing protocols if the 

persons were standing in front of each other. Furthermore, a 

small air flow circulation in the room could potentially 

spread the virus in the entire room only after 1 minute after 

the cough. In the case of no ventilation, the majority of these 

drops deposit on the ground, but around 7% of them become 

aerosols and circulate in the room, which might transmit the 

disease if they contain the virus. However, by opening the 

window, the droplets start to be ventilated, and after 5 

minutes, less than 1% stay in the room, and almost all of 

them fall on the ground or exit through the window. In 

summary, this study emphasizes the importance of room 

ventilation and maintaining social distancing (more than 4 

meters) for controlling the current COVID-19 pandemic or 

any other pandemic in the future. 
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