Developing Modal Incremental Dynamic Analysis for Retrofitted Masonry Structures

Document Type : Original Article

Authors

1 University of Minho, Guimarães, Portugal

2 Iran University of science and technology, Tehran, Iran

Abstract

Given the inherently time-consuming nature of Incremental Dynamic Analysis (IDA), which requires extensive computational resources to simulate multiple ground motions and assess various structural responses, it is essential to explore more efficient methodologies that maintain accuracy while reducing analysis time. The MPA-based IDA algorithm (MIDA) is being developed for various structures to address the limitations of IDA. In this study, six individual masonry structures were examined, including three walls with varying perforation dimensions and three three-dimensional buildings subjected to two retrofitting conditions. These structures were analyzed using 30 ground motion accelerations. The masonry structures, reinforced with either a shotcrete layer or a coating application, were evaluated as homogeneous and anisotropic materials using a finite element-based macro-modeling approach. Additionally, IDA was performed, and the maximum displacement of the masonry structures was compared to that of the MIDA. The results indicate that, except under high surcharge conditions, the MIDA procedure not only significantly reduces computational time but also provides reasonable accuracy compared to the IDA precision algorithm. Therefore, it can be concluded that the difference between the IDA and MIDA methods is influenced by the lateral stiffness of the masonry structures being analyzed

Keywords


  • Vamvatsikos, D., & Cornell, C. A. (2001). Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31(3), 491–514. doi:10.1002/eqe.141.
  • Park, Y., & Ang, A. H. ‐S. (1985). Mechanistic Seismic Damage Model for Reinforced Concrete. Journal of Structural Engineering, 111(4), 722–739. doi:10.1061/(asce)0733-9445(1985)111:4(722).
  • Chopra, A. K., & Goel, R. K. (2002). A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering and Structural Dynamics, 31(3), 561–582. doi:10.1002/eqe.144.
  • Mofid, M., Zarfam, P., & Fard, B. R. (2005). On the modal incremental dynamic analysis. Structural Design of Tall and Special Buildings, 14(4), 315–329. doi:10.1002/tal.271.
  • Zarfam, P., & Mofid, M. (2011). On the modal incremental dynamic analysis of reinforced concrete structures, using a trilinear idealization model. Engineering Structures, 33(4), 1117–1122. doi:10.1016/j.engstruct.2010.12.029.
  • Han, S. W., & Chopra, A. K. (2006). Approximate incremental dynamic analysis using the modal pushover analysis procedure. Earthquake Engineering and Structural Dynamics, 35(15), 1853–1873. doi:10.1002/eqe.605.
  • Zafarkhah, E., & Dehkordi, M. R. (2017). Extending the modal incremental dynamic analysis method for structures equipped with viscoelastic dampers. Journal of Vibroengineering, 19(2), 783–800. doi:10.21595/jve.2016.17181.
  • Zarfam, P., & Mofid, M. (2009). Evaluation of modal incremental dynamic analysis, using input energy intensity and modified bilinear curve. Structural Design of Tall and Special Buildings, 18(5), 573–586. doi:10.1002/tal.461.
  • Xiang, Y., Luo, Y. feng, & Shen, Z. yan. (2017). An extended modal pushover procedure for estimating the in-plane seismic responses of latticed arches. Soil Dynamics and Earthquake Engineering, 93, 42–60. doi:10.1016/j.soildyn.2016.12.005.
  • Polyakov, S. V. (1960). On the interaction between masonry filler walls and enclosing frame when loaded in the plane of the wall. Translations in earthquake engineering, 2(3), 36-42.
  • Holmes, M. (1961). Steel Frames With Brickwork and Concrete Infilling. Proceedings of the Institution of Civil Engineers, 19(4), 473–478. doi:10.1680/iicep.1961.11305.
  • Stafford Smith, B. (1967). Methods for predicting the lateral stiffness and strength of multi-storey infilled frames. Building Science, 2(3), 247–257. doi:10.1016/0007-3628(67)90027-8.
  • Hetényi, M., & Hetbenyi, M. I. (1946). Beams on elastic foundation: theory with applications in the fields of civil and mechanical engineering. University of Michigan Press, Ann Arbor, United States.
  • Reflak, J., & Fajfar, P. (1991). Elastic analysis of infilled frames using substructures. Earthquake Engineering, 285–292. doi:10.3138/9781487583217-037.
  • Hamburger, R. O., & Chakradeo, A. S. (1993). Methodology for seismic capacity evaluation of steel-frame buildings with infill unreinforced masonry. Mitigation and damage to the built environment, Central United States Earthquake Consortium (CUSEC), Memphis, United States.
  • Skafida, S., Koutas, L., & Bousias, S. N. (2014). Analytical Modeling of Masonry Infilled RC Frames and Verification with Experimental Data. Journal of Structures, 2014, 1–17. doi:10.1155/2014/216549.
  • Roca, P., Molins, C., & Marí, A. R. (2005). Strength Capacity of Masonry Wall Structures by the Equivalent Frame Method. Journal of Structural Engineering, 131(10), 1601–1610. doi:10.1061/(asce)0733-9445(2005)131:10(1601).
  • Magenes, G. (2000, January). A method for pushover analysis in seismic assessment of masonry buildings. Proceedings of the12th world conference on earthquake engineering, 30 January-4 February, Auckland, New Zealand.
  • Lagomarsino, S., Penna, A., Galasco, A., & Cattari, S. (2013). TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings. Engineering Structures, 56, 1787–1799. doi:10.1016/j.engstruct.2013.08.002.
  • Rots, J. G., & Blaauwendraad, J. (1995). Two approaches for the analysis of masonry structures: micro and macro-modeling. Heron, 40(4).
  • Lourenço, P. B. (1997). Computational strategies for masonry structures. PhD Thesis, Delft University of Technology, Delft, Netherlands.
  • Lourenço, P. B. (1994). Analysis of masonry structures with interface elements: Theory and applications. Faculteit der Civiele Techniek, TU Delft,, Delft, Netherlands.
  • Zucchini, A., & Lourenço, P. B. (2004). A coupled homogenisation-damage model for masonry cracking. Computers and Structures, 82(11–12), 917–929. doi:10.1016/j.compstruc.2004.02.020.
  • Lourenço, P. B. (1997). An anisotropic macro-model for masonry plates and shells: Implementation and validation. Faculty of Civil Engineering, Mechanics and Structures, Computational Mechanics, Delft University of Technology, Delft, Netherlands.
  • Bhattacharya, S., Nayak, S., & Dutta, S. C. (2014). A critical review of retrofitting methods for unreinforced masonry structures. International Journal of Disaster Risk Reduction, 7, 51–67. doi:10.1016/j.ijdrr.2013.12.004.
  • Lin, Y. W., Wotherspoon, L., Scott, A., & Ingham, J. M. (2014). In-plane strengthening of clay brick unreinforced masonry wallettes using ECC shotcrete. Engineering Structures, 66, 57–65. doi:10.1016/j.engstruct.2014.01.043.
  • Khan, H. A., Roy, P., & Nanda, R. P. (2016). Retrofitting of Brick Masonry Panels with Glass Fibre Reinforced Polymers. IOSR Journal of Mechanical and Civil Engineering, 16(053), 11–18. doi:10.9790/1684-16053011118.
  • Sathiparan, N., Nissanka, N. A. A. C., & Priyankara, R. L. S. (2016). A Comparative Study of Meshtype Retrofitting for Unreinforced Masonry Under In-plane Loading. Arabian Journal for Science and Engineering, 41(4), 1391–1401. doi:10.1007/s13369-015-1937-x.
  • Moroz, J. G., Lissel, S. L., & Hagel, M. D. (2014). Performance of bamboo reinforced concrete masonry shear walls. Construction and Building Materials, 61, 125–137. doi:10.1016/j.conbuildmat.2014.02.006.
  • Feo, L., Luciano, R., Misseri, G., & Rovero, L. (2016). Irregular stone masonries: Analysis and strengthening with glass fibre reinforced composites. Composites Part B: Engineering, 92, 84–93. doi:10.1016/j.compositesb.2016.02.038.
  • Nayak, S., & Dutta, S. C. (2016). Improving Seismic Performance of Masonry Structures with Openings by Polypropylene Bands and L-Shaped Reinforcing Bars. Journal of Performance of Constructed Facilities, 30(2). doi:10.1061/(asce)cf.1943-5509.0000733.
  • Kalliontzis, D., & Schultz, A. E. (2017). Improved estimation of the reverse-cyclic behavior of fully-grouted masonry shear walls with unbonded post-tensioning. Engineering Structures, 145, 83–96. doi:10.1016/j.engstruct.2017.05.011.
  • Santandrea, M., Quartarone, G., Carloni, C., & Gu, X. (2017). Confinement of masonry columns with steel and basalt FRCM composites. Key Engineering Materials, 747 KEM, 342–349. doi:10.4028/www.scientific.net/KEM.747.342.
  • Ismail, N., & Ingham, J. M. (2016). In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar. Engineering Structures, 118, 167–177. doi:10.1016/j.engstruct.2016.03.041.
  • Sathiparan, N., Sakurai, K., Numada, M., & Meguro, K. (2014). Seismic evaluation of earthquake resistance and retrofitting measures for two story masonry houses. Bulletin of Earthquake Engineering, 12(4), 1805–1826. doi:10.1007/s10518-014-9587-z.
  • Banerjee, S., Nayak, S., & Das, S. (2019). Enhancing the flexural behaviour of masonry wallet using PP band and steel wire mesh. Construction and Building Materials, 194, 179–191. doi:10.1016/j.conbuildmat.2018.11.001.
  • Messali, F., Metelli, G., & Plizzari, G. (2017). Experimental results on the retrofitting of hollow brick masonry walls with reinforced high performance mortar coatings. Construction and Building Materials, 141, 619–630. doi:10.1016/j.conbuildmat.2017.03.112.
  • Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method: The basis. Butterworth-Heinemann, Oxford, United Kingdom.
  • Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method: solid mechanics. Butterworth-Heinemann, Oxford, United Kingdom.
  • ASCE/SEI 7-10. (2010). Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784412916
  • Kent, D. C., & Park, R. (1971). Flexural Members with Confined Concrete. Journal of the Structural Division, 97(7), 1969–1990. doi:10.1061/jsdeag.0002957.
  • Koiter, W. T. (1953). Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface. Quarterly of Applied Mathematics, 11(3), 350–354. doi:10.1090/qam/59769.
  • Page, A. (1981). The Biaxial Compressive Strength of Brick Masonry. Proceedings of the Institution of Civil Engineers, 71(3), 893–906. doi:10.1680/iicep.1981.1825.
  • Asteris, P. G. (2008). Finite element micro-modeling of infilled frames. Electronic Journal of Structural Engineering, 8, 1–11.
  • ACI 318-14. (2014). Building Code Requirements for Structural Concrete (ACI 318-14). American Concrete Institute (ACI), Michigan, United States.
Volume 1, Issue 3
September 2024
Pages 10-24
  • Receive Date: 10 July 2024
  • Revise Date: 26 July 2024
  • Accept Date: 26 August 2024
  • First Publish Date: 01 September 2024
  • Publish Date: 01 September 2024