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 Abstract: 

Given the inherently time-consuming nature of Incremental Dynamic Analysis (IDA), which 

requires extensive computational resources to simulate multiple ground motions and assess 

various structural responses, it is essential to explore more efficient methodologies that maintain 

accuracy while reducing analysis time. The MPA-based IDA algorithm (MIDA) is being 

developed for various structures to address the limitations of IDA. In this study, six individual 

masonry structures were examined, including three walls with varying perforation dimensions 

and three three-dimensional buildings subjected to two retrofitting conditions. These structures 

were analyzed using 30 ground motion accelerations. The masonry structures, reinforced with 

either a shotcrete layer or a coating application, were evaluated as homogeneous and anisotropic 

materials using a finite element-based macro-modeling approach. Additionally, IDA was 

performed, and the maximum displacement of the masonry structures was compared to that of 

the MIDA. The results indicate that, except under high surcharge conditions, the MIDA procedure 

not only significantly reduces computational time but also provides reasonable accuracy 

compared to the IDA precision algorithm. Therefore, it can be concluded that the difference 

between the IDA and MIDA methods is influenced by the lateral stiffness of the masonry 

structures being analyzed. 
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1. Introduction 

To investigate structural behavior under seismic loading, 

several dynamic procedures have been proposed to assess 

damage measures in relation to intensity measurements. 

This study focuses on two methods applicable to masonry 

structures: the incremental dynamic analysis (IDA) method 

[1], which is the most accurate approach for determining the 

seismic behavior of structures, and the modal incremental 

dynamic analysis, which has been extended in the last two 

decades for various types of buildings, including steel and 

concrete structures. Notably, these algorithms ultimately 

produce a curve that describes the medium peak ground 

acceleration (PGA) of a series of scaled earthquakes, 

correlating it with various damage indices such as 

maximum roof displacement, maximum inter-story drift, 

maximum joint plastic rotation, and hysteretic energy of the 

structure [2]. 

The modal pushover algorithm was developed based on the 

similarities between rigorous linear response history 

analysis and standard response spectrum analysis in the 

linear range behavior of structures. This method aims to 

predict the inelastic response of structures with reasonably 

accurate results and significantly faster processing times 

compared to rigorous nonlinear response history analysis 

[3]. Subsequently, a new method was proposed that 

combines incremental dynamic analysis with modal 

pushover analysis (MPA) [4]. This approach achieves 

acceptable accuracy while dramatically reducing the time 

required compared to the IDA method. As a result, the MPA-

based IDA algorithm (MIDA) has been enhanced for 

concrete structures, assuming a trilinear idealization of the 

pushover curve [5]. 

Using this MPA-based approximate procedure, curves 

similar to IDA curves—ranging from elastic behavior to 

global dynamic instability—have been generated [6]. 

Recently, the algorithm has been extended for structures 

controlled by viscoelastic dampers [7]. Additionally, the 

bilinear idealization of the pushover curve has been 

modified to obtain the hysteretic energy of a multi-degree-

of-freedom system based on the structural hysteretic energy 

of an equivalent single-degree-of-freedom system [8]. The 
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development of the MIDA technique has not only focused 

on 2D frames and 3D ordinary buildings but has also 

extended the modal pushover procedure to estimate the in-

plane seismic responses of latticed arches [9]. 

In studies on masonry structures, various analytical 

strategies have been proposed based on factors such as 

structural dimensions and geometry, accuracy tolerance, 

loading conditions, analysis duration, and modeling 

expertise. 

Replacing masonry walls with equivalent diagonal 

elements, commonly used in masonry-infilled frames, has 

been a subject of research for many years. The concept was 

first proposed to replace the infill in each panel with a 

diagonal element [10]. Subsequently, it was highlighted that 

the infill could be substituted with a pin-jointed diagonal 

strut made of the same material, provided that the thickness-

to-diagonal length ratio of the strut is assumed to be one-

third [11]. Based on various loading conditions and 

supported by experimental and analytical data, this ratio has 

been recommended as an analytical equation in numerous 

studies [12, 13]. Over the past three decades, it has been 

demonstrated that a single-strut element cannot adequately 

represent the behavior of masonry walls, a conclusion 

supported by extensive research [14-16]. 

Another method for modeling masonry walls, particularly 

those with openings, is the equivalent frame modeling 

strategy [17, 18]. This approach has been implemented 

using the TREMURI computer program [19]. 

Implementing the simplified modeling procedures 

mentioned earlier may lead to inaccurate responses, 

particularly under seismic loads, due to their inability to 

account for details such as material nonlinear behavior and 

structural interactions. Consequently, adopting a numerical 

approach becomes essential. In recent years, a significant 

number of masonry wall simulations have been conducted 

using finite element analysis. These numerical methods are 

categorized into three distinct approaches: micro-modeling, 

simplified micro-modeling, and macro-modeling, each 

aimed at assessing the performance of masonry walls [20, 

21]. 

The most comprehensive evaluation method for masonry 

walls is micro-modeling. In this approach, all components, 

including units and mortar, are analyzed separately using 

continuum elements for the units and discontinuous 

elements for the unit/mortar interface [22]. However, this 

method is extremely time-consuming and is primarily 

recommended for the detailed study of small or historic 

structures. Due to the large memory requirements for 

processing and data storage, micro-modeling is not practical 

for other scenarios. Given these limitations, the simplified 

micro-modeling method is preferred, as it maintains 

accuracy without significant reductions in results. In this 

approach, larger units are represented using continuum 

elements, and the unit-mortar interface is approximated as a 

discontinuous element with mortar characteristics. 

Consequently, the masonry wall is treated as a composite 

material with elastic blocks and potential fracture lines at 

the joints [23]. 

In macro-modeling, the masonry wall is assumed to be an 

orthotropic homogeneous element, with material properties 

corresponding to the units and mortar. Tension and 

compression behaviors are treated differently based on the 

wall's properties in the head joint and bed joint directions 

[24]. The macro-modeling approach not only reduces 

analysis and modeling time but also simplifies mesh 

generation. In this study, the primary structure consists of 

solid walls of sufficient size. To avoid time-consuming 

analyses and modeling, the macro-modeling procedure is 

employed, despite an inevitable decrease in accuracy. 

A substantial amount of research has been conducted on 

retrofitting existing unreinforced masonry buildings (URM) 

to enhance their strength under seismic loading and prevent 

sudden, catastrophic building collapses [25]. Surface 

treatments, particularly the application of shotcrete [26], 

stitching and grout/epoxy injection [27], repointing [28], 

and external reinforcement, including bamboo 

reinforcement [29] and glass fiber-reinforced polymer 

(GFRP) reinforcement [30], have been extensively 

explored. Additionally, strengthening the junctions of URM 

walls through L-shaped reinforcement and polypropylene 

(PP) bands [31], post-tensioning with rubber tires [32], 

confinement techniques [33], and various types of mesh 

reinforcement, such as polymer mesh reinforcement [34] 

and PP packaging strip mesh reinforcement [35, 36], along 

with coating applications for URM walls [37], represent 

some of the most significant rehabilitation strategies 

implemented across numerous countries. In the present 

work, we will focus on two specific interventions: shotcrete 

and coating for URM walls. 

In this study, the MPA-Based IDA method will be applied 

to three 3D masonry buildings and three 2D masonry walls. 

The assessment of MIDA's efficiency will consider several 

significant parameters, including wall openings, story 

numbers, variations in surcharge, the impact of higher 

modes within the MIDA technique, and retrofitting methods 

using shotcrete and coating applications. Finally, the MIDA 

curves will be compared with the IDA curves. In all curves, 

the relationship between peak ground acceleration (PGA) 

and maximum displacement as a damage index will be 

illustrated. 

2. Macro-modeling of Masonry Structures 

Nonlinearity associated with an elastoplastic material 

simplifies the governing finite element equations to the 

following incremental form [38]. 

(1 ) [𝐾]{𝛥𝑢}𝑖 = {𝛥𝑓}𝑖  

where [K] is the global system stiffness matrix, {Δu} 

represents the vector of incremental nodal displacements, 

and {Δf} denotes the vector of incremental nodal forces. 

Additionally, i refers to the increment number. The global 

system stiffness matrix is derived by assembling the 

element stiffness matrices, which are defined by the 

following general formula: 

(2 ) [𝐾𝑒] = ∫ ∫ 𝐵𝑇𝐷𝐵𝑡|𝐽|
1

−1

1

−1
𝑑𝜉𝑑𝜂  
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In which D represents the elasticity matrix, which, in the 

case of plane stress, is defined by the following form: 

(3 ) [𝐷] =

[
 
 
 
 

𝐸𝑥

1−𝜈𝑥𝑦𝜈𝑦𝑥

𝐸𝑥𝜈𝑦𝑥

1−𝜈𝑥𝑦𝜈𝑦𝑥
0

𝐸𝑦𝜈𝑥𝑦

1−𝜈𝑥𝑦𝜈𝑦𝑥

𝐸𝑦

1−𝜈𝑥𝑦𝜈𝑦𝑥
0

0 0 𝐺𝑥𝑦]
 
 
 
 

  

where Ex and Ey are the moduli of elasticity, and νxy and νyx 

are Poisson’s ratios for the x-direction (parallel to bed 

joints) and y-direction (parallel to head joints), respectively. 

Additionally, B represents a suitable linear operator, 

determined for a four-node isoparametric rectangular finite 

element with 8 degrees of freedom, as shown in Figure 1, 

and is given by the following expression: 

(4 ) [𝐵] =

(

 
 

𝜕𝑁1

𝜕𝑥
0

𝜕𝑁2

𝜕𝑥
0

𝜕𝑁3

𝜕𝑥
0

𝜕𝑁4

𝜕𝑥
0

0
𝜕𝑁1

𝜕𝑦
0

𝜕𝑁2

𝜕𝑦
0

𝜕𝑁3

𝜕𝑦
0

𝜕𝑁4

𝜕𝑦

𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑦

𝜕𝑁2

𝜕𝑥

𝜕𝑁3

𝜕𝑦

𝜕𝑁3

𝜕𝑥

𝜕𝑁4

𝜕𝑦

𝜕𝑁4

𝜕𝑥 )

 
 

  

which N1, N2, N3 and N4 represent the shape functions at 

nodes 1 through 4, respectively, are obtained as follows: 

(5 ) 

𝑁1 =
(1−𝜉)(1−𝜂)

4
  

𝑁2 =
(1+𝜉)(1−𝜂)

4
  

𝑁3 =
(1+𝜉)(1+𝜂)

4
  

𝑁4 =
(1−𝜉)(1+𝜂)

4
  

 

Figure 1. The rectangular element 

In the preceding equation, 𝜉 and 𝜂 are the natural 

coordinates of the four-node rectangular elements (shown in 

Figure 1). Additionally, t is the thickness of the masonry 

wall, and |𝐽| denotes the determinant of the Jacobian matrix, 

which relates the derivatives of the shape functions in local 

coordinates, as follows: 

[𝐽] = [

𝜕𝑁1

𝜕𝜉

𝜕𝑁2

𝜕𝜉

𝜕𝑁3

𝜕𝜉

𝜕𝑁4

𝜕𝜉

𝜕𝑁1

𝜕𝜂

𝜕𝑁2

𝜕𝜂

𝜕𝑁3

𝜕𝜂

𝜕𝑁4

𝜕𝜂

] [

∆𝑥1 ∆𝑦1

∆𝑥2

∆𝑥3

∆𝑥4

∆𝑦2

∆𝑦3

∆𝑦4

]  (6) 

In this equation, (𝛥𝑥1, 𝛥𝑦1) to (𝛥𝑥4, 𝛥𝑦4) represent the 

incremental nodal displacements at joints 1 to 4 in the global 

coordinate system. 

During the evaluation of the stiffness matrix, integration 

over the element's area is required. Numerical integration is 

crucial for accurately evaluating these integrals within the 

element's domain. The conventional method for this is the 

Gauss integration formula, as it utilizes the minimum 

number of sample points to achieve the desired accuracy. 

After assembling the incremental nodal displacements and 

forces in the global system and solving for {Δ𝑢}𝑖, the 

incremental strain is determined by: 

(7 ) {𝛥𝜀}𝑖 = [𝐵]{𝛥𝑢}𝑖  

It is important to note that if the material is yielding, the 

strains will consist of both elastic and plastic components. 

Additionally, according to Hooke's law, the equilibrium 

between stress and strain is expressed as follows: 

 (8 ) {𝛥𝜎}𝑖 = [𝐷]{𝛥𝜀}𝑖  

These stresses are subsequently added to the previously 

accumulated stresses as shown in the following formula. 

The resulting stresses are then checked to determine 

whether yield has been violated [39]. 

 (9 ) 𝜎𝑖 = 𝜎𝑖−1 + {𝛥𝜎}𝑖  

The masonry failure surface is recalculated using this 

stress. If the failure surface is below zero (𝑓(𝜎) < 0), the 

material remains in the elastic state, and the process is 

repeated with an increased load (𝑖 = 𝑖 + 1) in Equation 1. 

However, if the failure surface exceeds zero (𝑓(𝜎) > 0), the 

stress is overestimated and must be redistributed to bring it 

back as close as possible to the yield surface (𝑓(𝜎) = 0). At 

this point, the material behaves plastically, and the plastic 

strains must be calculated. 

Finally, using the return mapping algorithm [21], the 

following set of four consecutive equations with four 

unknowns (the 𝜎𝑖 components and Δ𝜆 representing the 

increment of the plastic multiplier) must be solved: 

(10 ) {
𝐹 = 𝐷−1(𝜎𝑖 − 𝜎𝑡𝑟𝑖𝑎𝑙) + 𝛥𝜆

𝜕𝑓

𝜕𝜎
= 0

𝑓(𝜎𝑖) = 0
  

which 𝜎𝑡𝑟𝑖𝑎𝑙  is obtained in the following manner: 

(11) 𝜎𝑡𝑟𝑖𝑎𝑙 = 𝜎𝑖−1 + 𝐷{𝛥𝜀}𝑖  

 The set of equations mentioned above should be solved 

using the Newton-Raphson method, which is extended for a 

nonlinear system of equations. Therefore, the equations are 

rewritten in the following iterative form, assuming 

𝜎𝑖 = 𝜎𝑡𝑟𝑖𝑎𝑙 and Δ𝜆 = 0 as the starting point: 

(12 ) [
𝜎𝑖

𝛥𝜆
]
𝑗+1

= [
𝜎𝑖

𝛥𝜆
]
𝑗

− 𝐽−1 [
𝐹
𝑓
]  

Here, j represents the iteration of the solving procedure. 

The J, known as the Jacobian matrix, is defined as follows: 

(13 ) [𝐽] = (

𝜕𝐹

𝜕𝜎

𝜕𝐹

𝜕𝛥𝜆
𝜕𝑓

𝜕𝜎
0

)  

The modified elastic matrix is governed by the following 

equation: 
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 (14 ) 𝐷𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = (𝐽−1)3𝑥3  

where (𝐽−1)𝑛𝜎∗𝑛𝑞
  is the top-left 3x3 submatrix of the 

inverse of the Jacobian J. During the iteration process 

outlined in Equation 12, the operation is repeated until the 

stresses are sufficiently close to the yield surface within a 

specified error, which should be less than a predefined 

tolerance typically set to 0.01. Once this criterion is met, the 

solution is considered converged. The entire procedure 

explained so far is illustrated in Figure 2. 

 

Figure 2. Elasto-plastic algorithm for an anisotropic 

continuum masonry model 

3. Review of the MPA-Based IDA Method  

For implementing the MPA-based IDA technique, the 

following steps will be briefly considered [3]: 

• Modelling and design of the structure 

• Evaluating the first few dominant modes of the structure 

and the participation factor of each mode 

• Applying forces to the structure that are proportional to 

mass inertia, expressed as 𝑠 = 𝑚𝜑 for each mode 

• Equating the pushover curve to the generated bilinear 

curve to extract the yield strength 𝐹𝑦 and the strain 

hardening angle 𝛼 of the material. 

• Converting the MDOF bilinear curve to the SDOF 

bilinear curve using the relationships illustrated in 

Figure 3. 

 

Figure 3. SDOF Bilinear curve 

(15 ) 

(𝐹𝑦𝑖)𝑆𝐷𝐹 = (𝐹𝑦𝑖)𝑀𝐷𝐹/(𝐿/𝑀)𝑖  

(𝑈𝑟𝑖𝑦)𝑆𝐷𝐹 = (𝑈𝑟𝑖𝑦)𝑀𝐷𝐹/(𝐿/𝑀)𝑖𝜙𝑟𝑖  

𝛼𝑆𝐷𝐹 = 𝛼𝑀𝐷𝐹  

𝐿𝑖 = ∑𝑚𝑗𝜙𝑗𝑖 𝑀𝑖 = ∑𝑚𝑗𝜙𝑗𝑖
2
 

In this context, 𝜑𝑟𝑖 represents the roof mode shape for 

mode i and 𝛼 denotes the strain hardening angle of the 

material. Additionally, Fy signifies the yielding stress. 

Furthermore, Uriy, Li, and Mi represent the roof yielding 

displacement, a modal coefficient, and modal mass for 

mode i, respectively. 

• Preparing the group acceleration records and scaling 

them in relation to the distinguished PGA after applying 

significant corrections, such as baseline modification 

and filtering. 

• Applying the scaled records to the SDOF system, 

performing the nonlinear time history analysis, and 

computing the maximum displacement of the SDOF 

structure. 

• Transforming the maximum displacement of the SDOF 

system to the principal MDOF structure based on the 

following equation: 

(16 ) 𝐷𝑖𝑠𝑀𝑎𝑥,𝑀𝐷𝑂𝐹 = (𝐿/𝑀)𝑖 . 𝛷𝑟𝑖 . 𝐷𝑖𝑠𝑀𝑎𝑥,𝑆𝐷𝑂𝐹  

where DisMax,MDOF and DisMax.SDOF represent the 

maximum displacements of the MDOF and SDOF 

structures, respectively. 

• Applying a lateral load to the main MDOF structure 

until reaching the maximum displacement calculated 

in the previous step, and then determining the 

maximum drift as a damage index. 

• Summing all maximum drifts of the MDOF system 

obtained for the first few predominant modes of the 

structure using the Square Root of the Sum of Squares 

(SRSS) method. 

4. Extending the MPA-based IDA Technique 
To Masonry Structures 

4.1. Earthquakes records 

To analyse different masonry structures, thirty records 

were selected. All records correspond to soil groups C and 

D, according to ASCE/SEI 7-16 [40]. The magnitudes of the 

records range from 6.0 to 7.0, and the distance to the fault 

lies between 20 km and 40 km. Additionally, no near-fault 
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motions with directivity effects were included. The 

characteristics of all records are provided in Table 1. 

4.2. The geometry of Masonry Structures 

The following section outlines all structures used for the 

subsequent analyses, including three 2D walls and three 3D 

buildings. The 2D walls (shown in Figure 4) measure 2 m 

in width, 3 m in height, and 0.2 m in thickness. Three types 

of walls will be analyzed: one without holes, one with a 

0.5x0.5 m² hole at the center, and one with a 1×1 m² hole at 

the center. To assess the effect of surcharge, a beam 

measuring 0.2 m in width, 0.1 m in height, and 2 m in length 

will be placed on top of the walls. The one-story 3D building 

(shown in Figure 5), designed without retrofitting, has 

dimensions of 12.5 m in length, 8 m in width, and 3 m in 

height, with an internal wall thickness of 0.11 m and an 

external wall thickness of 0.3 m. All windows measure 1 m 

by 1 m, and all doors measure 1 m by 2 m. The building 

features a concrete slab on top of the walls, which has a 

thickness of 0.2 m. Additionally, a two-story and a three-

story masonry building, identical in geometry and materials 

to the one-story building, are included to examine the 

influence of the number of stories. 

As previously mentioned, all three 3D buildings - one-

story, two-story, and three-story - have been retrofitted 

using shotcrete and coating applications. In the former 

method, a reinforcement mesh with a diameter of 8 mm and 

a spacing of 150 mm is installed around the external walls, 

extending the full height of all buildings, embedded within 

a 5 cm concrete layer. In the latter method, concrete walls 

are constructed at the four corners of the external walls, 

extending 3 m in both horizontal orthogonal directions and 

covering the full height of all buildings. To reinforce these 

concrete walls, two reinforcement meshes with a diameter 

of 12 mm and a spacing of 150 mm are used. 

Table 1. 30 earthquake records characteristics 

No. Earthquake Name Year Station Name Magnitude Distance (km) Vs30 (m/sec) 

1 Imperial Valley-06 1979 Superstition Mtn Camera 6.53 24.61 362.38 (D) 

2 Imperial Valley-06 1979 Victoria 6.53 31.92 242.05 (D) 

3 Imperial Valley-06 1979 El Centro Array #13 6.53 21.98 249.92 (D) 

4 Victoria_ Mexico 1980 SAHOP Casa Flores 6.33 39.1 259.59 (D) 

5 Irpinia_ Italy-01 1980 Rionero In Vulture 6.9 27.49 574.88 (C) 

6 Irpinia_ Italy-01 1980 Bisaccia 6.9 21.26 496.46 (C) 

7 Irpinia_ Italy-02 1980 Sturno (STN) 6.2 20.39 382 (C) 

8 Coalinga-01 1983 Parkfield - Fault Zone 12 6.36 27.96 265.21 (D) 

9 Coalinga-01 1983 Parkfield - Gold Hill 2E 6.36 31.85 360.92 (D) 

10 Coalinga-01 1983 Parkfield - Vineyard Cany 1E 6.36 24.83 381.27 (C) 

11 Friuli_ Italy-01 1976 Codroipo 6.5 33.4 249.28 (D) 

12 Superstition Hills-02 1987 Plaster City 6.54 22.25 316.64 (D) 

13 Superstition Hills-02 1987 Calipatria Fire Station 6.54 27 205.78 (D) 

14 Spitak_ Armenia 1988 Gukasian 6.77 23.99 343.53 (D) 

15 Loma Prieta 1989 Calaveras Reservoir 6.93 35.49 571.99 (C) 

16 Loma Prieta 1989 Palo Alto - SLAC Lab 6.93 30.86 425.3(C) 

17 Loma Prieta 1989 Halls Valley 6.93 30.49 281.61 (D) 

18 Northern Calif-03 1954 Ferndale City Hall 6.5 27.02 219.31 (D) 

19 Griva_ Greece 1990 Edessa (bsmt) 6.1 33.29 551.3 (C) 

20 Griva_ Greece 1990 Kilkis 6.1 29.2 454.56 (C) 

21 San Fernando 1971 LA - Hollywood Stor FF 6.61 22.77 316.46 (D) 

22 San Fernando 1971 Pasadena - CIT Athenaeum 6.61 25.47 415.13 (C) 

23 Morgan Hill 1984 Capitola 6.19 39.08 288.62 (D) 

24 Morgan Hill 1984 Corralitos 6.19 23.23 462.24 (C) 

25 Morgan Hill 1984 San Juan Bautista_ 24 Polk St 6.19 27.15 335.5 (D) 

26 N. Palm Springs 1986 Indio 6.06 35.34 307.54 (D) 

27 N. Palm Springs 1986 Joshua Tree 6.06 23.2 379.32 (C) 

28 Chalfant Valley-02 1986 Benton 6.19 21.55 370.94 (C) 

29 Chalfant Valley-02 1986 Convict Creek 6.19 29.35 382.12 (C) 

30 Chalfant Valley-02 1986 Mammoth Lakes Sheriff Subst. 6.19 34.92 529.39 (C) 

 



Mehdipour & Raissi Dehkordi /Contrib. Sci. & Tech Eng, 2024, 1(3) 

15 
 

   

(c) (b) (a) 

Figure 4: Masonry walls, (a) a 2×3 𝒎𝟐 wall without a hole, (b) a 2×3 𝒎𝟐 wall with hole 0.5x0.5 𝒎𝟐 at center, (c) a 2×3 𝒎𝟐 wall with 

hole 1x1 𝒎𝟐 at center 

  

(b) (a) 

  

(d) (c) 

Figure  5: The 3D masonry building, (a) 3D view with roof, (b) 3D view without the roof, (c) 3D view without the roof (Another 

view), (d) Plan 

4.3. Material Properties 

The Kent and Park model [41], shown in Figure 6, is 

employed for both the confined and unconfined concrete 

constitutive models. 

 

Figure 6. Concrete constitutive model [41] 

In the preceding figure, f ’c represents the peak compressive 

strength of concrete. The terms 𝜀50𝑢 , 𝜀50𝑐 , 𝜀20𝑐 denote the 

strains corresponding to 0.5f’c for unconfined concrete, 

0.5f ’c for confined concrete, and 0.2f ’c for confined 

concrete, respectively. 

In the current study, the masonry failure surface is defined 

by the equation 𝑓(𝜎) = 0 representing a general anisotropic 

failure under biaxial stress (plane stress) as given in the 

following equation [42]: 

(17 ) 

2.27𝜎𝑥 + 9.87𝜎𝑦 + 0.573𝜎𝑥
2 + 1.32𝜎𝑦

2 + 6.25𝜏2 −

0.3𝜎𝑥𝜎𝑦 + 0.009585𝜎𝑥
2𝜎𝑦 + 0.003135𝜎𝑥𝜎𝑦

2 +

0.28398𝜎𝑥𝜏
2 + 0.4689𝜎𝑦𝜏2 − 1 = 0  

Here, 𝜎𝑥, 𝜎𝑦 and 𝜏 represent the stresses in the x-direction, 

y-direction, and shear stress, respectively. The elastic 

properties of concrete and masonry in the two orthogonal 

directions are provided in Table 2 [43] 
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Table 2. Concrete and masonry elastic properties 

Density 
Posion’s 

ratio 
Moduli of elasticity 

Material 

𝜌 (𝐾𝑔 𝑚3)⁄  𝜈𝑦𝑥 𝜈𝑥𝑦 𝐸𝑦 (𝐾𝑁 𝑚2⁄ ) 𝐸𝑥  (𝐾𝑁 𝑚2⁄ ) 

2400 0.2 0.2 2.9e7 2.9e7 Concrete 

1800 0.32 0.19 7.5e6 4.5e6 
Concrete 

masonry 

It should be noted that in the case of plane stress in an 

anisotropic material, the following equation supports this 

[44]: 

(18 ) 𝐸𝑥𝜈𝑦𝑥 = 𝐸𝑦𝜈𝑥𝑦   

To obtain the peak compressive strength of concrete, the 

following empirical relationship is prescribed [45]: 

(19 ) 𝐸 = 0.043𝜌1.5√𝑓 ′
𝑐
  

This formula is valid for values of 𝜌between 1440 and 

2560 kg/m³. For modeling the reinforcement, a bilinear 

elastic-plastic constitutive model is established as follows 

(Figure 7): 

 

       Figure 7. Steel constitutive model 

In the above figure, fy represents the yield stress of steel. 

Additionally, E and H denote the modulus of elasticity and 

the modulus of plasticity of steel, respectively. The strain 

corresponding to the stress fy is represented as εy. 

Furthermore, the elastic and plastic properties of the 

reinforcement are detailed in Table 3. 

Table 3: Elasto-Plastic properties of reinforcement  

Posion’s ratio Moduli of elasticity Density 

𝜈 𝐸 (𝐺𝑃𝑎) 𝜌 (𝐾𝑔 𝑚3)⁄  

0.3 210 7850 

Yield strain Moduli of plasticity Yield stress 

𝜀𝑦 𝐻 (𝐺𝑃𝑎) 𝑓𝑦 (𝑀𝑃𝑎) 

0.0021 6.3 420 

4.4. Conducting the IDA and MPA-based IDA 

Algorithms on the Masonry Structures 

All analyses presented compare the efficiency of the 

proposed algorithm, MPA-based IDA, to the exact method, 

IDA. To achieve a comprehensive evaluation, several 

parameters that may significantly affect masonry structures 

are briefly outlined below. 

a. Various types of masonry structures to account for in-

plane and out-of-plane performance effects 

b. Number of stories in the 3D masonry buildings to 

evaluate the effects of higher modes in the MPA 

technique 

c. Whether the 3D buildings have been retrofitted. In other 

words, whether strengthening enhances or disrupts the 

MPA technique in relation to the IDA algorithm 

d. The degree of nonlinearity in the masonry material 

during the pushover analysis of the main structure in the 

MPA procedure or while conducting the IDA technique. 

Failure occurs when the maximum stress exceeds the 

allowable stress, defined as the stresses encountered on 

the masonry failure surface multiplied by a fixed 

coefficient. In this study, coefficients of 1 and 10 are 

used to represent low and high nonlinearity levels, 

respectively. To further investigate the masonry behavior 

in the inelastic range, a coefficient of 10 is typically 

selected. It is important to note that for the 3D buildings 

with a concrete slab, external walls of 30 cm, internal 

walls of 11 cm, and a potential shotcrete or coating layer, 

the order of failure under increasing PGA is as follows: 

first the internal walls, then the external walls, followed 

by the retrofitting implementations, and finally the roof 

slab. This means that to observe greater nonlinearity 

during loading, the failure of the internal walls is 

disregarded, and the analysis is halted as soon as the 

external walls fail. 

e. The amount of surcharge on top of the masonry walls 

f. The effect of openings in the masonry walls 

g. Applying different earthquakes in both the longitudinal 

and transverse directions of the 3D buildings to 

investigate the influence of higher modes in the MPA-

based IDA 

Based on the description in subsection 3, the masonry 

structure undergoes dynamic analysis to obtain the mode 

shapes for the first few dominant modes. The entire 

structure is then subjected to monotonically increasing 

forces for each mode, generating the pushover curve (base 

shear versus maximum displacement of the structure). 

During the pushover analysis, the forces are steadily 

increased to induce the level of nonlinearity detailed in 

paragraph (d). Next, the dynamic equation of the main 

structure is converted into a SDOF system using Equation 

15 and is solved to obtain the nonlinear behavior curve from 

the previous step. Finally, the maximum displacement of the 

SDOF system is transformed back into the principal MDOF 

structure using Equation 16. 

4.5. Results 

In the following section, as stated in subsection 4.4, the 

median results of the IDA and MPA techniques will be 

presented. A nonlinearity coefficient of 10 and a surcharge 

of 3000 kg/m³ on the roof of the 3D buildings will be 

applied unless otherwise specified. Furthermore, in all 

analyses, except for subsection 4.5.6, only the first mode is 

considered in the MPA algorithm. 

4.5.1. The effect of retrofitting 
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The three 2D walls (shown in Figure 4) are evaluated for 

in-plane loadings in the absence of surcharge, considering 

both unreinforced and retrofitted conditions with shotcrete 

implementation. The results of the IDA and MPA curves are 

presented in Figures 8 to 10. 

 
(a) 

 
(b) 

Figure 8. Medium IDA and MIDA curves for wall without 

hole, (a) Unreinforced, (b) Retrofitted 

 
(a) 

 
(b) 

Figure  9. Medium IDA and MIDA curves for wall with hole 

0.5×0.5 m2, (a) Unreinforced, (b) Retrofitted 

 
(a) 

 
(b) 

Figure 10. Medium IDA and MIDA curves for wall with hole 

1×1 m2, (a) Unreinforced, (b) Retrofitted 

In the case of unreinforced walls, greater discrepancies are 

observed, with a maximum error of less than 16%. In 

contrast, the error for reinforced walls is below 6%. The 

differences between the IDA and MPA curves tend to 

diminish for structures designed to be stronger, and the 

improvement in reinforced walls can be observed by 

analyzing the maximum PGA. Consequently, these walls 
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can withstand more significant loads for the given level of 

nonlinearity compared to unreinforced walls. Additionally, 

strength reduction due to the dimensional expansion of 

openings is evident. In other words, as the opening 

dimensions increase, either the maximum PGA decreases, 

or for a similar PGA, the maximum displacement increases, 

resulting in a smaller ratio of maximum PGA to maximum 

displacement. 

4.5.2. The effect of loading direction 

The 3D buildings - one-story, two-story, and three-story - 

are analyzed in both the longitudinal and transverse 

directions. The corresponding outputs are presented in 

Figures 11 to 13. 

 
(a) 

 
(b) 

Figure 11. Medium IDA and MIDA curves for the one-story 

building, (a) longitudinal, (b) transverse 

The total area of the walls in the longitudinal direction is 

56% greater than that in the transverse direction. 

Consequently, the longitudinal direction exhibits more 

resistance than the transverse direction. Additionally, it is 

observed that the IDA curves for the longitudinal direction 

show higher maximum PGA values compared to the 

transverse direction for all one-, two-, and three-story 

buildings. Furthermore, as the number of stories increases, 

the maximum PGA decreases in both the longitudinal and 

transverse directions due to the reduction in overall stiffness 

of high-rise buildings compared to low-rise buildings. In 

accordance with the above curves, the maximum errors 

between the IDA and MPA curves are summarized for all 

scenarios in Table 4. 

 
(a) 

 
(b) 

Figure  12. Medium IDA and MIDA curves for the two-story 

building, (a) longitudinal, (b) transverse 

With reference to the above table, as the number of stories 

increases or as the strengthened longitudinal direction is 

subjected to loading, the differences between the IDA and 

MPA techniques decrease. The hypothesis suggests that 

greater lateral resistance leads to improved consistency 

between the IDA and MPA algorithms, highlighting a 

significant finding. 
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(b) 

Figure  13. Medium IDA and MIDA curves for the three-story 

building, (a) longitudinal, (b) transverse 

Table 4. Peak errors from the figures in subsection 4.5.2 

 One -story Two-story Three-story 

Longitudinal dir. 6.36% 11.88% 12.41% 

Transverse dir. 8.53% 13.92% 18.44% 

4.5.3.The effect of story number 

The one-story, two-story, and three-story 3D buildings are 

examined with a nonlinearity coefficient of 1 in the 

longitudinal direction, and the IDA and MPA results are 

shown in Figure 14. 

It is clear that a lower nonlinearity coefficient results in a 

smaller maximum PGA, a trend evident when comparing 

the figures above with previous ones. As previously noted, 

buildings with more stories tend to be weaker under lateral 

loading; thus, increased PGA leads to either lower PGA, 

higher maximum displacement, or a smaller ratio of PGA to 

maximum displacement. The maximum errors for the one-, 

two-, and three-story buildings are 2.95%, 11.04%, and 

15.63%, respectively, indicating that reduced lateral 

strength contributes to greater discrepancies between the 

IDA and MPA curves 

 
(a) 

 
(b) 

 
(c) 

Figure 14. Medium IDA and MPA curves: (a) One-story 

building, (b) Two-story building, (c) Three-story building 

4.5.4.The effect of retrofitting methods 

The one-story, two-story, and three-story 3D buildings 

retrofitted with both shotcrete and coating are evaluated in 

the longitudinal direction. Figures 15 to 17 illustrate the 

effect of retrofitting methods on the IDA and MPA curves. 
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(b) 

Figure 15. Medium IDA and MPA curves for the one-story 

building: (a) Shotcrete, (b) Coating 

 
(a) 

 
(b) 

Figure  16. Medium IDA and MIDA curves for the two-story 

building, (a) Shotcrete, (b) Coating 

Comparing the above figures further reinforces that 

reinforcement leads to IDA and MPA curves exhibiting 

higher PGA values, even in the elastic range, which is 

linearly observable in the curves. An increase in the number 

of stories in reinforced masonry buildings with shotcrete 

applications results in higher maximum PGA, while the 

coating application exhibits the opposite behavior. All 

previously mentioned observations for Figures 11, 12, and 

13 apply here as well. In accordance with the above figures, 

the maximum errors between the IDA and MPA curves are 

summarized in Table 5. 

 
(a) 

 
(b) 

Figure  17. Medium IDA and MIDA curves for the three-story 

building, (a) Shotcrete, (b) Coating 

Table 5. Peak errors from the figures in subsection 4.5.4 

 One-story Two-story Three-story 

Shotcrete 5.31% 10.15% 12.39% 

Coating 3.24% 7.71% 11.29% 

Comparing the above figures once again demonstrates that 

reinforcement leads to IDA and MPA curves exhibiting 

higher PGA values, even within the elastic range, which is 

linearly observable in the curves. An increase in the number 

of stories in reinforced masonry buildings with shotcrete 

applications results in higher maximum PGA, while the 

coating application shows the opposite behavior. All 

previously mentioned observations for Figures 11, 12, and 

13 apply here as well. In accordance with the above figures, 

the maximum errors between the IDA and MPA curves are 

summarized in the Table 5. 

Table 5 again shows that the MPA technique has lower 

accuracy for high-rise buildings compared to low-rise 

buildings. Notably, the coating application generally 

provides better accuracy for the MPA technique, indicating 
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that it may be more effective despite being less cost-

effective than shotcrete application. 

4.5.5. The effect of surcharge pressure 

The 2D wall without a hole is examined in the in-plane 

direction for different surcharge amounts. Table 6 displays 

the medium IDA and MPA values corresponding to the 

various surcharge pressures for the wall without a hole. 

Table 6. Medium IDA and MIDA for the perforated wall  

 
IDA MIDA Err. (%) IDA MIDA Err. (%) 

PGA (g) Surcharge = 625 [Pa]  Surcharge = 1250 [Pa] 

0.29 6.8 6.8 0.4 6.4 7.2 12.5 

0.86 20.5 20.7 1.0 19.3 22.2 15.0 

1.44 37.2 42.0 12.9 33.6 40.7 21.1 

2.01 73.4 72.8 0.8 58.8 72.9 24.0 

2.59 118.2 116.3 1.6 100.7 114.8 14.0 

PGA (g) Surcharge = 2500 [Pa]  Surcharge = 5000 [Pa] 

0.28 6.5 6.7 3.1 7.2 7.0 2.2 

0.84 19.4 20.2 4.2 21.6 21.1 2.3 

1.41 34.4 40.6 17.9 36.1 40.4 12.0 

1.97 70.5 70.5 0.1 66.6 68.5 2.9 

2.53 130.0 111.2 14.5 121.9 105.2 13.7 

PGA (g) Surcharge = 10000 [Pa]  Surcharge = 20000 [Pa] 

0.28 6.5 6.7 3.1 6.7 6.7 0.2 

0.84 19.4 20.2 4.2 20.0 20.2 0.9 

1.41 37.8 40.6 7.3 36.4 40.6 11.4 

1.97 68.4 70.5 3.2 67.0 70.5 5.3 

2.53 117.5 111.2 5.3 116.1 111.2 4.3 

PGA (g) Surcharge = 40000 [Pa]  Surcharge = 80000 [Pa] 

0.29 6.7 6.8 1.7 8.2 6.7 18.8 

0.86 20.3 20.7 1.9 24.6 20.2 17.9 

1.44 34.9 42.0 20.4 33.5 40.6 21.3 

2.01 74.4 72.8 2.1 121.8 70.5 42.1 

2.59 203.0 116.3 42.7 376.5 111.2 70.5 

Although it appears that variations in surcharge do not 

affect the maximum PGA or MPA outputs, the IDA outputs 

are remarkably sensitive. In other words, at high surcharge 

levels, the structures experience instability, leading to 

significant maximum displacement. Consequently, the 

maximum errors indicate that MPA results are no longer 

reliable when additional pressure is applied to the masonry 

structures. 

4.5.6. The effects of higher modes 

The 3D buildings, one, two and three-story are investigated 

in both the longitudinal and transverse directions of the 

buildings so as to investigate higher modes effects on the 

MIDA analysis. In Tables 7 and 8, the IDA and MIDA 

results for two-story and three-story buildings are 

presented: 

 

 

Table 7. Medium IDA and MIDA for the two-story building 

 
IDA 

MIDA 

 Mode 1 Mode 1,2 

PGA (g) Longitudinal direction 

0.3 7.0 7.2 7.2 

0.6 14.0 14.5 14.7 

0.9 22.0 23.5 23.7 

1.2 32.0 35.8 35.9 

1.5 45.5 50.3 50.7 

1.8 61.1 68.0 68.3 

2.1 94.8 88.1 88.6 

2.4 118.6 111.3 111.8 

2.7 141.8 134.8 135.4 

3 164.7 158.9 159.4 

PGA (g) Transverse direction 

0.2 5.5 6.0 6.3 

0.5 11.1 12.3 12.7 

0.7 17.6 19.8 20.4 

1.0 26.2 29.9 30.5 

1.2 37.5 42.4 43.2 

1.4 63.6 56.6 57.4 

1.7 79.1 73.3 74.2 

1.9 91.1 92.2 93.4 

2.1 106.3 111.9 113.0 

2.4 125.5 133.6 134.8 

Table 8. Medium IDA and MIDA for the three-story building 

 
IDA 

MIDA 

 Mode 1 Mode 1,2 Mode 1,2,3 

PGA (g) Longitudinal direction 

0.3 7.0 7.3 7.3 7.3 

0.6 16.5 17.7 18.6 18.6 

0.9 29.4 33.1 34.2 34.2 

1.2 49.4 54.0 55.3 55.3 

1.4 83.9 77.9 78.9 78.9 

1.7 112.6 104.0 105.4 105.4 

2.0 142.5 132.9 134.6 134.6 

2.3 174.5 162.6 164.7 164.8 

2.6 200.1 192.9 194.8 194.9 

2.9 217.0 223.7 226.2 226.3 

PGA (g) Transverse direction 

0.2 4.8 5.2 5.2 5.2 

0.4 10.9 12.4 13.4 13.4 

0.6 18.8 21.9 22.9 23.0 

0.8 29.0 34.3 35.6 35.7 

0.9 43.6 49.3 51.3 51.4 

1.1 66.1 65.3 67.3 67.5 

1.3 84.6 82.1 84.4 84.6 

1.5 101.4 98.5 101.4 101.6 

1.7 120.5 115.6 118.7 118.9 

1.9 140.1 133.6 136.9 137.1 
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The preceding table indicates that considering higher 

modes in the modal analysis of the MPA technique does not 

directly impact the error quantities. In some cases, higher 

modes reduce the maximum discrepancies between the IDA 

and MPA curves. However, for all conditions, the error 

variance, which is not significant, may lead to the neglect of 

higher modes' influence. Furthermore, given the notable 

reduction in processing time associated with the MPA 

procedure, this assumption becomes practically 

advantageous. As shown in Table 9, the effect of higher 

modes is negligible compared to the primary mode, 

especially for modes higher than 2. Additionally, it does not 

matter which direction is subjected to lateral seismic 

loading. Consequently, it can be concluded that considering 

the first two modes is generally sufficient in the MPA 

approach for all masonry buildings. 

Table 9. Maximum displacement (cm) for each mode 

 2-story building 3-story building 

Step 
Longitudinal 

Mode 1 Mode 2 Mode 1 Mode 2 Mode 3 

1 7.24 0.01 7.27 0.03 0.00 

2 14.53 0.18 17.72 0.84 0.03 

3 23.52 0.13 33.10 1.09 0.03 

4 35.75 0.19 54.03 1.24 0.05 

5 50.33 0.33 77.90 0.99 0.06 

6 67.98 0.32 104.03 1.33 0.08 

7 88.06 0.51 132.94 1.61 0.09 

8 111.27 0.57 162.61 2.08 0.08 

9 134.80 0.61 192.85 1.93 0.10 

10 158.88 0.57 223.67 2.57 0.10 

Step 
Transverse 

Mode 1 Mode 2 Mode 1 Mode 2 Mode 3 

1 6.04 0.26 5.19 0.03 0.01 

2 12.34 0.33 12.44 0.97 0.03 

3 19.79 0.64 21.88 1.05 0.09 

4 29.90 0.64 34.29 1.33 0.06 

5 42.41 0.83 49.27 2.01 0.11 

6 56.60 0.83 65.30 2.05 0.11 

7 73.30 0.95 82.09 2.36 0.18 

8 92.17 1.23 98.52 2.87 0.18 

9 111.93 1.07 115.61 3.12 0.19 

10 133.62 1.22 133.65 3.22 0.21 

5. Conclusions 

In the current research, the MPA-based IDA procedure was 

applied to masonry structures, taking into account various 

practical parameters, including opening dimensions, story 

number, surcharge, higher modes, and retrofitting 

implementations. Ultimately, MPA curves were compared 

with IDA curves. To summarize, the following highlights 

some key issues related to the implementation of IDA and 

MPA curves on masonry buildings: 

• Except under large surcharge conditions, the 

conformity of IDA and MPA curves is reasonable, 

with the maximum error typically being less than 

15%. In conclusion, the MPA technique is reliable, 

practical, preferable, and significantly faster than the 

IDA approach while still being accurate. 

• For high surcharge conditions, masonry structures are 

prone to failure, leading to significant discrepancies 

between MPA and IDA results. Therefore, the use of 

the MPA algorithm should be avoided in such cases. 

• As previously mentioned several times, more vigorous 

structures under lateral loadings give the best 

estimation of IDA curves. For convenient accuracy, 

the error between IDA and MIDA curves can be 

underestimated. Concerning this matter, elastic ranges 

are usually becoming longer. Consequently, the MIDA 

technique provides fewer errors in comparison with 

the IDA algorithm in the following structures: 

✓ Reinforced structures 

✓ Structures without openings 

✓ Low-rise buildings 

• The coating application reinforces buildings more 

effectively than shotcrete; however, the thickness of 

the coating significantly influences this preference. 

Consequently, the coating implementation results in 

greater conformity between IDA and MPA curves. 

• Although considering higher effective modes makes 

the MPA algorithm very time-consuming, the final 

results do not vary significantly. Overall, it is highly 

recommended to use the MPA technique by 

incorporating only the first two primary modes for all 

masonry structures. 
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