Application of Generalized Exponential Function Method for Exact Solutions of Wu-Zhang System

Document Type : Original Article

Authors

1 Department of Mathematics, University of Kufa, Najaf, Iraq

2 Department of Engineering Sciences, University of Guilan, Rudsar, Iran

3 Department of Mathematics, University of Mazandaran, Babolsar, Iran

Abstract

The present research aims to find a precise method for the wu-zhang system on scattered long waves, which can be a positive step for physical science in dealing with the structure of scattered waves and provide 3D diagrams for further studies of other sciences.

Keywords


  • Shah, R., Khan, H., Arif, M., & Kumam, P. (2019). Application of Laplace-Adomian decomposition method for the analytical solution of third-order dispersive fractional partial differential equations. Entropy, 21(4), 335. doi:10.3390/e21040335.
  • Yang, X. J., & Tenreiro Machado, J. A. (2019). A new fractal nonlinear Burgers’ equation arising in the acoustic signals propagation. Mathematical Methods in the Applied Sciences, 42(18), 7539–7544. doi:10.1002/mma.5904.
  • Touchent, K. A., Hammouch, Z., & Mekkaoui, T. (2020). A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives. Applied Mathematics and Nonlinear Sciences, 5(2), 35–48. doi:10.2478/amns.2020.2.00012.
  • Al-Smadi, M., Abu Arqub, O., & Hadid, S. (2020). An attractive analytical technique for a coupled system of fractional partial differential equations in shallow water waves with conformable derivative. Communications in Theoretical Physics, 72(8), 85001. doi:10.1088/1572-9494/ab8a29.
  • Guo, Y., Cao, X., Liu, B., & Gao, M. (2020). Solving partial differential equations using deep learning and physical constraints. Applied Sciences (Switzerland), 10(17), 5917. doi:10.3390/app10175917.
  • Siddique, I., Jaradat, M. M. M., Zafar, A., Bukht Mehdi, K., & Osman, M. S. (2021). Exact traveling wave solutions for two prolific conformable M-Fractional differential equations via three diverse approaches. Results in Physics, 28, 104557. doi:10.1016/j.rinp.2021.104557.
  • Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., & Mortari, D. (2021). Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing, 457, 334–356. doi:10.1016/j.neucom.2021.06.015.
  • Talib, I., Jarad, F., Mirza, M. U., Nawaz, A., & Riaz, M. B. (2022). A generalized operational matrix of mixed partial derivative terms with applications to multi-order fractional partial differential equations. Alexandria Engineering Journal, 61(1), 135–145. doi:10.1016/j.aej.2021.04.067.
  • Özkan, E. M., & Özkan, A. (2023). On exact solutions of some important nonlinear conformable time-fractional differential equations. SeMA Journal, 80(2), 303–318. doi:10.1007/s40324-022-00290-5.
  • Fibich, G. (2015). The Nonlinear Schrödinger Equation. In Applied Mathematical Sciences. Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-319-12748-4.
  • Rizvi, S. T. R., Ali, K., & Ahmad, M. (2020). Optical solitons for Biswas–Milovic equation by new extended auxiliary equation method. Optik, 204. doi:10.1016/j.ijleo.2020.164181.
  • Veeresha, P., Prakasha, D. G., Singh, J., Kumar, D., & Baleanu, D. (2020). Fractional Klein-Gordon-Schrödinger equations with Mittag-Leffler memory. Chinese Journal of Physics, 68, 65–78. doi:10.1016/j.cjph.2020.08.023.
  • Düşünceli, F. (2018). Solutions for the Drinfeld-Sokolov equation using an IBSEFM method. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 6(1), 505-510.
  • Adler, V. E. (2011). On a discrete analog of the Tzitzeica equation. arXiv preprint arXiv:1103.5139. doi:10.48550/arXiv.1103.5139.
  • Triki, H., Hayat, T., & Aldossary, O. M. (2012). 1-Soliton Solution of the Three Component System of Wu-Zhang Equations ABSTRACT| FULL TEXT. Hacettepe Journal of Mathematics and Statistics, 41(4), 537-543.
  • Chen, C.-L., Tang, X., & Lou, S.-Y. (2002). Solutions of a (2+1)-dimensional dispersive long wave equation. Physical Review E, 66(3). doi:10.1103/physreve.66.036605.
  • Zheng, X., Chen, Y., & Zhang, H. (2003). Generalized extended tanh-function method and its application to (1+1)-dimensional dispersive long wave equation. Physics Letters A, 311(2–3), 145–157. doi:10.1016/s0375-9601(03)00451-1.
  • Taghizadeh, N., Akbari, M., & Shahidi, M. (2011). Application of reduced differential transform method to the Wu-Zhang equation. Australian journal of basic and applied sciences, 5(5), 565-571.
  • Eslami, M., & Rezazadeh, H. (2016). The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo, 53(3), 475–485. doi:10.1007/s10092-015-0158-8.
  • Inc, M., Kilic, B., Karatas, E., Mohamed Al Qurashi, M., Baleanu, D., & Tchier, F. (2016). On soliton solutions of the Wu-Zhang system. Open Physics, 14(1), 76–80. doi:10.1515/phys-2016-0004.
  • Xiong, N., Li, Y. Q., Chen, J. C., & Chen, Y. (2016). One-Dimensional Optimal System and Similarity Reductions of Wu - Zhang Equation. Communications in Theoretical Physics, 66(1), 1–11. doi:10.1088/0253-6102/66/1/001.
  • Mirzazadeh, M., Ekici, M., Eslamic, M., Krishnan, E. V., Kumar, S., & Biswas, A. (2017). Solitons and other solutions to Wu–Zhang system. Nonlinear Analysis: Modelling and Control, 22(4), 441–458. doi:10.15388/NA.2017.4.2.
  • Koparan, M., Kaplan, M., Bekir, A., & Guner, O. (2017). A novel generalized Kudryashov method for exact solutions of nonlinear evolution equations. AIP Conference Proceedings, 1798(1)). doi:10.1063/1.4972674.
  • Kaplan, M., Mayeli, P., & Hosseini, K. (2017). Exact traveling wave solutions of the Wu–Zhang system describing (1 + 1)-dimensional dispersive long wave. Optical and Quantum Electronics, 49(12), 1–10. doi:10.1007/s11082-017-1231-0.
  • Awan, A. U., Tahir, M., & Rehman, H. U. (2019). On traveling wave solutions: The Wu-Zhang system describing dispersive long waves. Modern Physics Letters B, 33(6), 1950059. doi:10.1142/S0217984919500593.
  • Yel, G., & Baskonus, H. M. (2019). Solitons in conformable time-fractional Wu–Zhang system arising in coastal design. Pramana - Journal of Physics, 93(4). doi:10.1007/s12043-019-1818-z.
  • Ghanbari, B., & Inc, M. (2018). A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation. European Physical Journal Plus, 133(4), 142. doi:10.1140/epjp/i2018-11984-1.
  • Ghanbari, B., & Gómez-Aguilar, J. F. (2019). The generalized exponential rational function method for Radhakrishnan-Kundu-Lakshmanan equation with β-conformable time derivative. Revista Mexicana de Fisica, 65(5), 503–518. doi:10.31349/RevMexFis.65.503.
  • Ghanbari, B. (2019). Abundant soliton solutions for the Hirota-Maccari equation via the generalized exponential rational function method. Modern Physics Letters B, 33(9), 1950106. doi:10.1142/S0217984919501069.
  • Ghanbari, B., & Nisar, K. S. (2020). Determining new soliton solutions for a generalized nonlinear evolution equation using an effective analytical method. Alexandria Engineering Journal, 59(5), 3171–3179. doi:10.1016/j.aej.2020.07.032.
  • Ghanbari, B., & Kuo, C. K. (2020). A variety of solitary wave solutions to the (2+1)-dimensional bidirectional SK and variable-coefficient SK equations. Results in Physics, 18, 103266. doi:10.1016/j.rinp.2020.103266.
  • Cao, Y., Parvaneh, F., Alamri, S., Rajhi, A. A., & Anqi, A. E. (2021). Some exact wave solutions to a variety of the Schrödinger equation with two nonlinearity laws and conformable derivative. Results in Physics, 31, 104929. doi:10.1016/j.rinp.2021.104929.
  • Günay, B., Kuo, C. K., & Ma, W. X. (2021). An application of the exponential rational function method to exact solutions to the Drinfeld–Sokolov system. Results in Physics, 29, 104733. doi:10.1016/j.rinp.2021.104733.
  • Ali, K. K., Yilmazer, R., Bulut, H., Aktürk, T., & Osman, M. S. (2021). Abundant exact solutions to the strain wave equation in micro-structured solids. Modern Physics Letters B, 35(26), 2150439. doi:10.1142/s021798492150439x.
Volume 1, Issue 2
June 2024
Pages 1-8
  • Receive Date: 15 March 2024
  • Revise Date: 24 March 2024
  • Accept Date: 10 May 2024
  • First Publish Date: 01 June 2024
  • Publish Date: 01 June 2024