Seismic Assessment of the Concrete Buttress Dam Using Three-Dimensional Finite Element Analysis

Document Type : Original Article

Authors

1 Assistant Professor, Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran

2 Associate Professor, Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract

This study investigates the structural performance of a concrete buttress dam under the static and seismic loading, focusing on dam–foundation–reservoir interaction. A three-dimensional finite element model was developed using the available geometric, material, and geological data to assess the stress distribution, displacement patterns, and dynamic responses under critical load combinations. Material properties were determined from the assumed values and established empirical relationships, accounting for differences between static and dynamic conditions. Seismic performance was evaluated for Design Basis Level (DBL) and Maximum Credible Level (MCL) scenarios using site-specific ground motion records. Results show that the tensile and compressive stresses are localized and remain below the concrete’s capacity. The maximum crest displacement under MCL loading was 13.0 mm, which is within acceptable safety limits. Overall, the findings indicate that the analyzed configuration maintains sufficient safety margins against cracking, crushing, and excessive deformation, providing a robust technical foundation for the planned capacity-enhancement measures.

Keywords


  1. Ebrahimi Hariri, A., Mohammadi, Y., & Soltani, A. (2025). Numerical simulation of seismic-induced sloshing in rectangular water tanks considering three different approaches. Contributions of Science and Technology for Engineering, 1(4), 16-27. doi:10.22080/cste.2024.28228.1005.
  2. Ghaniyoun, M. H., Moradloo, A., & Asadi, K. N. (2024). Seismic evaluation of concrete gravity dam under the effect of far and near field earthquakes considering dam saturation. Innovative Infrastructure Solutions, 9(9), 356. doi:10.1007/s41062-024-01658-4.
  3. Hussein, T. S., kadir, M. A. A., Alzabeebee, S., & Ramli, M. Z. (2024). Assessing Seismic Vulnerability of Concrete Gravity Dams: A Comparative Analysis of Damage Indexes. Transportation Infrastructure Geotechnology, 11(6), 4061–4097. doi:10.1007/s40515-024-00440-4.
  4. Tanchev, L. (2014). Dams and appurtenant hydraulic structures. CRC Press, Boca Raton, United States.
  5. Dankers, C. L. (2019). A framework for the evaluation of the structural safety of existing concrete gravity dams. Master Thesis, University of Cape Town, Cape Town, South Africa.
  6. Kp, S. S., Shrimali, M. K., Bharati, S. D., & Datta, T. K. (2024). Seismic Performance Evaluation of Concrete Gravity Dams Subjected to Mainshock and Aftershocks. Journal of Vibration Engineering and Technologies, 12(Suppl 2), 1399–1412. doi:10.1007/s42417-024-01481-2.
  7. Zhang, L., Mao, J., & Zhao, L. (2025). Nonlinear Seismic Assessment of Concrete Dams Using a Novel Elastoplastic Damage Numerical Framework. Journal of Engineering Mechanics, 151(4), 4025004. doi:10.1061/jenmdt.emeng-8092.
  8. Mirzabozorg, H., Ghaemian, M., & Aghajanzadeh, S. M. (2020). Static and Dynamic Safety Evaluation of A Heightened Arch Dam Including Massed Foundation Effects. Numerical Methods in Civil Engineering, 4(4), 37–48. doi:10.52547/nmce.4.4.37.
  9. Wohnlich, A., Fankhauser, A., & Feuz, B. (2023). Dam heightening in Switzerland. Role of Dams and Reservoirs in a Successful Energy Transition. CRC Press, Boca Raton, United States.
  10. Ramarao, V. S., & Bhajantri, M. R. (2020). Performance of modified spillway for heightened gravity dam. ISH Journal of Hydraulic Engineering, 26(3), 325–331. doi:10.1080/09715010.2018.1491809.
  11. Feuz, B. (1994). Raising of the Mauvoisin Dam. Structural Engineering International, 4(2), 103–104. doi:10.2749/101686694780650823.
  12. Wieland, M. (2004). Earthquake Safety of Concrete Dams and Seismic Design Criteria for Major Dam Projects. ICOLD publication.
  13. Fu, Z., He, Y., & Su, S. (2011). Key problems and solutions in arch dam heightening. Frontiers of Architecture and Civil Engineering in China, 5(1), 98–104. doi:10.1007/s11709-010-0004-7.
  14. Chen, Y., Gu, C., Wu, B., Shao, C., Wu, Z., & Dai, B. (2019). Inversion Modeling of Dam-Zoning Elasticity Modulus for Heightened Concrete Dam Using ICS-IPSO Algorithm. Mathematical Problems in Engineering, 2019(1), 9328326. doi:10.1155/2019/9328326.
  15. Chen, B., Huang, Z. shen, Bao, T. fei, & Zhu, Z. (2021). Deformation early-warning index for heightened gravity dam during impoundment period. Water Science and Engineering, 14(1), 54–64. doi:10.1016/j.wse.2021.03.001.
  16. Clerc, B., Manso, P., & De Cesare, G. (2021). Heightening of Very High Gravity Dams: The Case Study of the Grande Dixence. Numerical Analysis of Dams. ICOLD-BW 2019. Lecture Notes in Civil Engineering, vol 91. Springer, Cham, Switzerland. doi:10.1007/978-3-030-51085-5_43.
  17. Wang, Y., Yang, H., Zhou, X., & Wu, C. (2016). Study on influence of contact sliding along new-old concrete joint interfaces on gravity dam stability. Journal of Hydroelectric Engineering, 35(3), 121-128. doi:10.11660/slfdxb.20160315.
  18. Kang, F., Liu, J., Li, J., & Li, S. (2017). Concrete dam deformation prediction model for health monitoring based on extreme learning machine. Structural Control and Health Monitoring, 24(10), 1997. doi:10.1002/stc.1997.
  19. Zhu, B. F., Zhang, G. X., Wu, L. K., & Hu, P. (2007). Measures for reducing the cracking of the binding interface between fresh and old concrete in heightening of gravity dam. Journal of hydraulic engineering, 6, 639-645. doi:10.3321/j.issn:0559-9350.2007.06.001
  20. Su, H., Wen, Z., Sun, X., & Yang, M. (2015). Time-varying identification model for dam behavior considering structural reinforcement. Structural Safety, 57, 1–7. doi:10.1016/j.strusafe.2015.07.002.
  21. Sharma, A., Thakur, S., & Nallasivam, K. (2025). Seismic Response Assessment of Concrete Gravity Dam with Dam-Foundation-Reservoir Interaction by Adopting Finite Element Technique. Journal of Vibration Engineering and Technologies, 13(5). doi:10.1007/s42417-025-01905-7.
  22. Rasa, A. Y., Budak, A., & Düzgün, O. A. (2022). An efficient finite element model for dynamic analysis of gravity dam-reservoir-foundation interaction problems. Latin American Journal of Solids and Structures, 19(6). doi:10.1590/1679-78257178.
  23. Habib, A., Al Houri, A., Habib, M., Elzokra, A., & Yildirim, U. (2021). Structural performance and finite element modeling of roller compacted concrete dams: A review. Latin American Journal of Solids and Structures, 18(4). doi:10.1590/1679-78256467.
  24. Karimi, I., Khaji, N., Ahmadi, M. T., & Mirzayee, M. (2010). System identification of concrete gravity dams using artificial neural networks based on a hybrid finite element-boundary element approach. Engineering Structures, 32(11), 3583–3591. doi:10.1016/j.engstruct.2010.08.002.
  25. Zhang, S., Wang, G., & Yu, X. (2013). Seismic cracking analysis of concrete gravity dams with initial cracks using the extended finite element method. Engineering Structures, 56, 528–543. doi:10.1016/j.engstruct.2013.05.037.
  26. Løkke, A., & Chopra, A. K. (2019). Direct finite element method for nonlinear earthquake analysis of concrete dams: Simplification, modeling, and practical application. Earthquake Engineering and Structural Dynamics, 48(7), 818–842. doi:10.1002/eqe.3150.
  27. Mahdian Khalil, A., & Navayi Neya, B. (2025). Seismic Analysis of Concrete Buttress Dam Considering Intake Tower and Reservoir. Journal of Rehabilitation in Civil Engineering, 13(1), 130–150. doi:10.22075/jrce.2024.31734.1897.
  28. Enzell, J., Nordström, E., Sjölander, A., Ansell, A., & Malm, R. (2023). Physical Model Tests of Concrete Buttress Dams with Failure Imposed by Hydrostatic Water Pressure. Water, 15(20), 3627. doi:10.3390/w15203627
  29. Abbasiverki, R., Malm, R., Ansell, A., & Nordström, E. (2021). Nonlinear Behaviour of Concrete Buttress Dams under High-Frequency Excitations Taking into Account Topographical Amplifications. Shock and Vibration, 2021(1). doi:10.1155/2021/4944682.
  30. Aghajanzadeh, S. M., & Ghaemian, M. (2013). Nonlinear dynamic analysis of a concrete gravity dam considering an elastoplastic constitutive model for the foundation. Scientia Iranica, 20(6), 1676–1684
Volume 3, Issue 1
February 2026
Pages 41-51
  • Receive Date: 12 August 2025
  • Revise Date: 08 October 2025
  • Accept Date: 30 October 2025
  • First Publish Date: 31 January 2026
  • Publish Date: 12 February 2026