High-Efficiency L-Band GaN Power Amplifier Employing Second and Third Harmonic Impedance Optimization

Document Type : Original Article

Authors

1 Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology (IROST)

2 Amirkabir University of Technology, Department of Electrical Engineering.

Abstract

This paper presents the design and evaluation of a high-efficiency harmonic tuned L-band power amplifier (PA) utilizing a Gallium Nitride (GaN) High Electron Mobility Transistor (HEMT). To meet the demands of modern wireless communication and radar systems operating in the L-band, advanced harmonic tuning techniques were employed, specifically focusing on controlling the impedance terminations at the second (2f₀) and third (3f₀) harmonic frequencies. Through careful load-pull analysis and optimized output matching network design, precise harmonic terminations were achieved alongside optimal fundamental frequency impedance matching. The fabricated PA demonstrates state-of-the-art performance, delivering a saturated output power (Psat) of 46.4 dBm with a corresponding peak Power Added Efficiency (PAE) of 83%. Critically, the PA maintains high efficiency under back-off conditions, achieving 60% PAE at 3 dB output back-off (OBO). These results highlight the effectiveness of this combined second and third harmonic optimization approach with GaN HEMT technology, which enables both high peak efficiency and excellent back-off efficiency for demanding L-band applications.

Keywords


  1. Cripps, S. C. (2006). RF power amplifiers for wireless communications. Artech House, Norwood, United States.
  2. Grebennikov, A. (2005). RF and microwave power amplifier design. McGraw-Hill, New York, United States.
  3. Abbasnezhad, F., Tayarani, M., Abrishamifar, A., & Nayyeri, V. (2021). A Simple and Adjustable Technique for Effective Linearization of Power Amplifiers Using Harmonic Injection. IEEE Access, 9, 37287–37296. doi:10.1109/access.2021.3063286.
  4. Abbasnezhad, F., Tayarani, M., Abrishamifar, A., & Nayyeri, V. (2022). A highly linearized second harmonic injected GaN power amplifier. Microwave and Optical Technology Letters, 64(10), 1732–1739. doi:10.1002/mop.33360.
  5. Raab, F. H., Asbeck, P., Cripps, S., Kenington, P. B., Popović, Z. B., Pothecary, N., Sevic, J. F., & Sokal, N. O. (2002). Power amplifiers and transmitters for RF and microwave. IEEE Transactions on Microwave Theory and Techniques, 50(3), 814– doi:10.1109/22.989965.
  6. Raab, F. H. (1997). Class-F Power Amplifiers with Maximally Flat Waveforms. IEEE Transactions on Microwave Theory and Techniques, 45(11), 2007–2012. doi:10.1109/22.644215.
  7. Grebennikov, , & Sokal, N. O. (2007). Class-F Power Amplifiers. Switchmode RF Power Amplifiers, 95–149. Newnes, London, United Kingdom. doi:10.1016/b978-075067962-6/50034-4.
  8. Cripps, S. C., Tasker, P. J., Clarke, A. L., Lees, J., & Benedikt, J. (2009). On the continuity of high efficiency modes in linear RF power amplifiers. IEEE Microwave and Wireless Components Letters, 19(10), 665– doi:10.1109/LMWC.2009.2029754.
  9. Wright, P., Lees, J., Benedikt, J., Tasker, P. J., & Cripps, S. C. (2009). A Methodology for Realizing High Efficiency Class-J in a Linear and Broadband PA. IEEE Transactions on Microwave Theory and Techniques, 57(12), 3196– doi:10.1109/tmtt.2009.2033295.
  10. Colantonio, P., Giannini, F., & Limiti, E. (2009). High Efficiency RF and Microwave Solid State Power Amplifiers. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470746547.
  11. Mishra, U. K., Parikh, P., & Wu, Y. F. (2002). AlGaN/GaN HEMTs - An overview of device operation and applications. Proceedings of the IEEE, 90(6), 1022–1031. doi:10.1109/JPROC.2002.1021567.
  12. Abbasnezhad, F., Tayarani, M., Abrishamifar, A., & Nayyeri, V. (2022). GaN Power Amplifier Linearization Using Second Harmonic Injection into the Input. 2022 52nd European Microwave Conference, EuMC 2022, 353–356. doi:10.23919/EuMC54642.2022.9924430.
  13. Saez, R. G., & Marques, N. M. (2019). LDMOS versus GaN RF power amplifier comparison based on the computing complexity needed to linearize the output. Electronics (Switzerland), 8(11). doi:10.3390/electronics8111260.
  14. Zaid, M., Nazir, M. S., Dangi, R., & Chauhan, Y. S. (2024). Design and experimental validation of class-F−1 GaN power amplifier using a compact harmonic control unit. Microelectronics Journal, 149, 106218. doi:10.1016/j.mejo.2024.106218.
  15. Zhang, L. C., & Shi, L. X. (2022). Design of 70% PAE Class-F 1.2–1.4 GHz 10 W GaN power amplifier MMIC. Microwave and Optical Technology Letters, 64(4), 670–675. doi:10.1002/mop.33174.
  16. Tanaka, S., Mogami, R., Iisaka, N., Honjo, K., & Ishikawa, R. (2024). A 2‐GHz GaN HEMT Power Amplifier Harmonically Tuned Using a Compact One‐Port CRLH Transmission Line. IET Circuits, Devices & Systems, 2024(1). doi:10.1049/2024/2690713.
  17. Kilic, H. H., & Demir, S. (2019). Highly efficient dual-band GaN power amplifier utilising pin diode-based tunable harmonic load matching. IET Microwaves, Antennas and Propagation, 13(1), 63–70. doi:10.1049/iet-map.2018.5318.
  18. Hu, X., Meng, X., Yu, C., & Liu, Y. (2017). Design of highly efficient broadband harmonic-optimised gan power amplifier via modified simplified real frequency technique. Electronics Letters, 53(21), 1414–1416. doi:10.1049/el.2017.2849.
  19. Zaid, M., Pampori, A., Nazir, M. S., & Chauhan, Y. S. (2023). High Efficiency and High Linearity GaN Power Amplifier with Harmonic Tuning and Fundamental Matching Networks. 2023 IEEE Microwaves, Antennas, and Propagation Conference, MAPCON 2023, 1–4,. doi:10.1109/MAPCON58678.2023.10464181.
  20. Liu, C., Sun, Q., Wu, H. D., Zhang, H., & Ghannouchi, F. M. (2024). Efficiency Enhancement of Class-J Power Amplifiers by Injecting Second Harmonic Into the Gate and Drain Node Simultaneously. IEEE Microwave and Wireless Technology Letters, 34(12), 1347–1350. doi:10.1109/LMWT.2024.3467345.
  21. Xuan, X., Cheng, Z., Zhang, Z., & Le, C. (2023). Design of a 0.4-3.9-GHz Wideband High-Efficiency Power Amplifier Based on a Novel Bandwidth Extended Matching Network. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(8), 2809–2813. doi:10.1109/TCSII.2023.3253551.
  22. Xuan, X., Cheng, Z., Hayes, B., Zhang, Z., Le, C., Gong, T., & Gao, S. (2024). Investigation and Design of Ultra-Wideband Resistive-Reactive Series of Continuous Inverse Modes Power Amplifier With Input Second-Harmonic Manipulation. IEEE Transactions on Circuits and Systems I: Regular Papers, 71(12), 5669–5682. doi:10.1109/TCSI.2024.3473024.
  23. Liang, C., Roblin, P., Hahn, Y., Popovic, Z., & Chang, H. C. (2019). Novel Outphasing Power Amplifiers Designed with an Analytic Generalized Doherty-Chireix Continuum Theory. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(8), 2935–2948. doi:10.1109/TCSI.2019.2910471.
  24. Mohadeskasaei, S. A., & Zhou, X. (2016). A 30 watt high efficient high power RF pulse power amplifier. 2016 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1–3. doi:10.1109/nemo.2016.7561638.
  25. Wu, , Yuk, K. S., & Branner, G. R. (2019). A compact 100W, 68% Class F GaN Power Amplifier for L-band GPS. 2019 IEEE 20th Wireless and Microwave Technology Conference, WAMICON 2019, 1–4. doi:10.1109/WAMICON.2019.8765474.
  26. Yang, F., Li, J., Yu, H., Yin, K., Zhao, H., Chen, X., Zhang, A., & Jin, Z. (2022). L-band high power solid-state power amplifier for aerospace usage. Electronics Letters, 58(7), 265– doi:10.1049/ell2.12425.
  27. Mahdi, M., Mohamed, E. N., Elelimy Abounemra, A. M., & Darwish, M. (2022). Optimized Harmonic Tuned High Efficiency L-Band Power Amplifier. 13th International Conference on Electrical Engineering, ICEENG 2022, 96–99. doi:10.1109/ICEENG49683.2022.9782002.
  28. Furxhi, S., De Marzi, S., Cabria, L., Giofre, R., & Colantonio, P. (2023). A 100W High Efficiency Hybrid Broadband GaN Power Amplifier for Galileo Navigation System. 2023 18th European Microwave Integrated Circuits Conference, EuMIC 2023, 88–91. doi:10.23919/EuMIC58042.2023.10289071.
Volume 2, Issue 4
September 2025
Pages 28-32
  • Receive Date: 05 May 2025
  • Revise Date: 10 June 2025
  • Accept Date: 25 July 2025
  • First Publish Date: 25 July 2025
  • Publish Date: 01 September 2025