This study presents an optimized ultra-wideband (UWB) Vivaldi antenna engineered for high gain, narrow beamwidth, and superior impedance matching, specifically designed for Through-the-Wall Imaging Radar (TWIR) systems. Fabricated on a cost-effective 0.8-mm-thick FR-4 substrate with dimensions of 148 mm × 85 mm, the antenna incorporates ten open-ended rectangular slits on each arm of the exponentially tapered slot and nine metallic strips at the slot’s end. Through extensive parametric optimization and precise positioning, this configuration uniquely enhances gain by 51% at lower frequencies and 35% at 4 GHz compared to conventional designs, peaking at 12.59 dBi. Operating across 1.9 to 4.5 GHz, it delivers gains exceeding 7 dBi from 2.3 to 4.5 GHz and a narrow beamwidth down to 29.3° at 4 GHz. Validated by CST Microwave Studio simulations and measurements, this antenna outperforms existing TWIR-focused Vivaldi designs in penetration and resolution, making it an exceptional candidate for advanced radar imaging applications.
Federal Communications Commission. (2002). Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems. First Report and Order, FCC 02-48, Washington, United States.
Hoang, T. V., Kumar, R., Fromenteze, T., Garcia-Fernandez, M., Alvarez-Narciandi, G., Fusco, V., & Yurduseven, O. (2022). Frequency Selective Computational Through-Wall Imaging Using a Dynamically Reconfigurable Metasurface Aperture. IEEE Open Journal of Antennas and Propagation, 3, 353–362. doi:10.1109/OJAP.2022.3161128.
Fedeli, A., Pastorino, M., Ponti, C., Randazzo, A., & Schettini, G. (2020). Through-the-wall microwave imaging: Forward and inverse scattering modeling. Sensors (Switzerland), 20(10), 2865. doi:10.3390/s20102865.
Mu, K., Luan, T. H., Zhu, L., Cai, L. X., & Gao, L. (2020). A Survey of Handy See-Through Wall Technology. IEEE Access, 8, 82951–82971. doi:10.1109/ACCESS.2020.2991201.
Angel, J. J., & Jones Mary, T. A. (2014). Design of a Vivaldi Antenna for Brain Cancer Detection. 2014 International Conference on Electronics and Communication Systems (ICECS), 1–4. doi:10.1109/ecs.2014.6892759.
Gibson, P. J. (1979). The Vivaldi Aerial. 1979 9th European Microwave Conference. doi:10.1109/euma.1979.332681.
Deng, C., & Xie, Y. J. (2009). Design of resistive loading Vivaldi antenna. IEEE Antennas and Wireless Propagation Letters, 8, 240–243. doi:10.1109/LAWP.2009.2013730.
Dehmollaian, M., Thiel, M., & Sarabandi, K. (2009). Through-the-wall imaging using differential SAR. IEEE Transactions on Geoscience and Remote Sensing, 47(5), 1289–1296. doi:10.1109/TGRS.2008.2010052.
Lewis, L., Fassett, M., & Hunt, J. (1974). A broadband stripline array element. 1974 antennas and propagation society international 10-12 June, 1974. doi:10.1109/APS.1974.1147206
Erdoğan, Y. (2009). Parametric study and design of vivaldi antennas and arrays. Master's Thesis, Middle East Technical University, Ankara, Turkey.
Wang, Y. (2012). UWB pulse radar for human imaging and doppler detection applications. PhD Thesis, The University of Tennessee, Knoxville, Knoxville, United States.
Edwards, M. C. (2009). Design of a continuous-wave synthetic aperture radar system with analog dechirp. Brigham Young University, Provo, United States.
Amin, M. G. (n.d.). Through the Wall Radar Imaging”. CRC Press.
Shi, X., Cao, Y., Hu, Y., Luo, X., Yang, H., & Ye, L. H. (2021). A High-Gain Antipodal Vivaldi Antenna With Director and Metamaterial at 1–28 GHz. IEEE Antennas and Wireless Propagation Letters, 20(12), 2432–2436. doi:10.1109/lawp.2021.3114061.
Kumar, B., Vardhan, K. A., & Sharma, P. (2016). Design of slotted Vivaldi antenna for through wall imaging system. 2016 11th International Conference on Industrial and Information Systems (ICIIS), 3-4 December, 2016, Roorkee, India.
Kuriakose, A., George, T. A., & Anand, S. (2020). Improved High Gain Vivaldi Antenna Design for Through-wall Radar Applications. Proceedings of the 2020 International Symposium on Antennas and Propagation, APSYM 2020, 58–61. doi:10.1109/APSYM50265.2020.9350711.
Cam, V. P., Van Tran, S., & Nguyen, D. B. (2018). An array of antipodal Vivaldi antenna with genetic optimization. 2018 International Conference on Advanced Technologies for Communications (ATC), 142–145. doi:10.1109/atc.2018.8587486.
Kumar, B., Vardhan, K. A., & Sharma, P. (2016). Design of slotted Vivaldi antenna for through wall imaging system. 2016 11th International Conference on Industrial and Information Systems (ICIIS), 704–709. doi:10.1109/iciinfs.2016.8263029.
Tahar, Z., Derobert, X., & Benslama, M. (2018). An Ultra-Wideband Modified Vivaldi Antenna Applied To Through The Ground And Wall Imaging. Progress In Electromagnetics Research C, 86, 111–122. doi:10.2528/pierc18051502.
Ahmed, S., Joret, A., Katiran, N., Liew Abdullah, M. F., Zakaria, Z., & Sulong, M. S. (2023). Ultra-wide band antipodal Vivaldi antenna design using target detection algorithm for detection application. Bulletin of Electrical Engineering and Informatics, 12(4), 2165–2172. doi:10.11591/eei.v12i4.5081.
Zhang, J., Lan, H., Liu, M., & Yang, Y. (2020). A Handheld Nano Through-Wall Radar Locating with the Gain-Enhanced Vivaldi Antenna. IEEE Sensors Journal, 20(8), 4420–4429. doi:10.1109/JSEN.2019.2963234.
Murphy, C., Popovici, E., & Greenhalgh, P. (2018). Antenna Design for a 3D Image Radar System. 2018 29th Irish Signals and Systems Conference (ISSC), 1–6. doi:10.1109/issc.2018.8585382.
Mohammadjany, A. , & Miar-Naimi, H. (2026). A High-Gain, Low CRR, Narrow beam width Enhanced Vivaldi Antenna for Through-the- Wall Imaging Radar. Contributions of Science and Technology for Engineering, 3(1), 1-9. doi: 10.22080/cste.2025.29067.1035
MLA
Armin Mohammadjany; Hossein Miar-Naimi. "A High-Gain, Low CRR, Narrow beam width Enhanced Vivaldi Antenna for Through-the- Wall Imaging Radar", Contributions of Science and Technology for Engineering, 3, 1, 2026, 1-9. doi: 10.22080/cste.2025.29067.1035
HARVARD
Mohammadjany, A., Miar-Naimi, H. (2026). 'A High-Gain, Low CRR, Narrow beam width Enhanced Vivaldi Antenna for Through-the- Wall Imaging Radar', Contributions of Science and Technology for Engineering, 3(1), pp. 1-9. doi: 10.22080/cste.2025.29067.1035
CHICAGO
A. Mohammadjany and H. Miar-Naimi, "A High-Gain, Low CRR, Narrow beam width Enhanced Vivaldi Antenna for Through-the- Wall Imaging Radar," Contributions of Science and Technology for Engineering, 3 1 (2026): 1-9, doi: 10.22080/cste.2025.29067.1035
VANCOUVER
Mohammadjany, A., Miar-Naimi, H. A High-Gain, Low CRR, Narrow beam width Enhanced Vivaldi Antenna for Through-the- Wall Imaging Radar. Contributions of Science and Technology for Engineering, 2026; 3(1): 1-9. doi: 10.22080/cste.2025.29067.1035