Experimental analysis, statistical modeling and optimization of the edge effects associated with laser-bent perforated sheets

Document Type : Original Article

Author

Department of Mechanical Engineering, Arak University of Technology

Abstract

The edge effect phenomenon is instrumental in influencing the precision, reliability, and overall caliber of laser laser-bent sheets. This study conducts an experimental investigation into the edge effect present in laser laser-bent perforated sheets. To this end, the impact of critical input parameters in the laser bending process, including laser output power, laser scanning speed, and the number of irradiations on the edge effect of laser laser-bent perforated sheets, is meticulously assessed. The findings indicate that the edge effect phenomenon intensifies with an increase in laser power. Furthermore, it is observed that the edge effect diminishes as the laser scanning speed escalates. Additionally, an increase in the number of irradiations correspondingly enhances the edge effect of perforated sheets. The optimization of input parameters reveals that to attain the minimal edge effect in laser bent perforated sheets, the laser output power, scanning speed, and number of irradiations must be calibrated to 90 Watts, 3 mm/s, and 10, respectively an edge effect of merely 1.25% at the free edge of the LBPS can be successfully achieved..

Keywords


  1. Liu, J., Sun, S., Guan, Y., & Ji, Z. (2010). Experimental study on negative laser bending process of steel foils. Optics and Lasers in Engineering, 48(1), 83–88. doi:10.1016/j.optlaseng.2009.07.019.
  2. Shen, H., Hu, J., & Yao, Z. (2010). Analysis and control of edge effects in laser bending. Optics and Lasers in Engineering, 48(3), 305–315. doi:10.1016/j.optlaseng.2009.11.005.
  3. Kant, R., & Joshi, S. N. (2016). Thermo-mechanical studies on bending mechanism, bend angle and edge effect during multi-scan laser bending of magnesium M1A alloy sheets. Journal of Manufacturing Processes, 23, 135–148. doi:10.1016/j.jmapro.2016.05.017.
  4. Wang, X., Shi, Y., Guo, Y., & Sun, R. (2020). Laser bending and edge effect control of layered metal composite plate. Chinese Journal of Lasers, 47(3), 302004-1. doi:10.3788/cjl202047.0302004
  5. Nath, U., Yadav, V., & Purohit, R. (2021). Finite element analysis of AM30 magnesium alloy sheet in the laser bending process. Advances in Materials and Processing Technologies, 8(2), 1803–1815. doi:10.1080/2374068x.2021.1878699.
  6. Zhang, Y., Dong, W., Yang, T., Guo, C., & Chen, F. (2022). Edge effect reduction in laser bending of DP980 high-strength steel. International Journal of Advanced Manufacturing Technology, 119(3–4), 1965–1973. doi:10.1007/s00170-021-08424-1.
  7. Song, J. H., Lee, G. A., Jung, K. H., & Park, S. J. (2015). Laser irradiated bending characteristics of the ultra-high strength steel sheets. International Journal of Automotive Technology, 16(1), 89–96. doi:10.1007/s12239-015-0010-9.
  8. Maji, K., Pratihar, D. K., & Nath, A. K. (2016). Experimental investigations, modeling, and optimization of multi-scan laser forming of AISI 304 stainless steel sheet. International Journal of Advanced Manufacturing Technology, 83(9–12), 1441–1455. doi:10.1007/s00170-015-7675-0.
  9. Fetene, B. N., Dixit, U. S., & Liao, H. (2017). Laser bending of friction stir processed and cement-coated sheets. Materials and Manufacturing Processes, 32(14), 1628–1634. doi:10.1080/10426914.2017.1279321.
  10. Fetene, B. N., Kumar, V., Dixit, U. S., & Echempati, R. (2018). Numerical and experimental study on multi-pass laser bending of AH36 steel strips. Optics & Laser Technology, 99, 291–300. doi:10.1016/j.optlastec.2017.09.014.
  11. Paramasivan, K., Das, S., Marimuthu, S., & Misra, D. (2018). Increment in laser bending angle by forced bottom cooling. International Journal of Advanced Manufacturing Technology, 94(5–8), 2137–2147. doi:10.1007/s00170-017-1035-1.
  12. Safari, M., & Joudaki, J. (2018). Prediction of Bending Angle for Laser Forming of Tailor Machined Blanks by Neural Network. Iranian Journal of Materials Forming, 5(1), 45–57. doi:10.22099/ijmf.2018.28561.1097.
  13. Kotobi, M., & Honarpisheh, M. (2018). Through-depth residual stress measurement of laser bent steel–titanium bimetal sheets. Journal of Strain Analysis for Engineering Design, 53(3), 130–140. doi:10.1177/0309324717753212.
  14. Seyedkashi, S. M. H., Abazari, H. D., Gollo, M. H., Woo, Y. Y., & Moon, Y. H. (2019). Characterization of laser bending of SUS304L/C11000 clad sheets. Journal of Mechanical Science and Technology, 33(7), 3223–3230. doi:10.1007/s12206-019-0617-2.
  15. Li, Z., & Wang, X. (2019). Analytical model for estimating bending angle in laser bending of 304 stainless steel/Q235 carbon steel laminated plate. Journal of Laser Applications, 31(4), 42012. doi:10.2351/1.5116729.
  16. Yadav, R., Goyal, D. K., & Kant, R. (2022). Enhancing process competency by forced cooling in laser bending process. Journal of Thermal Stresses, 45(8), 617–629. doi:10.1080/01495739.2022.2103057.
  17. Mazdak, S., Sheykholeslami, M. R., Gholami, M., Parvaz, H., Najafizadeh, M. M., Mahmoudi, S., & Vanaki, A. (2023). A statistical model for estimation of bending angle in laser bending of two-layer steel-aluminum sheets. Optics & Laser Technology, 157, 108575. doi:10.1016/j.optlastec.2022.108575.
  18. Rattan, A., Jasra, Y., & Saxena, R. K. (2020). Prediction of bending behavior for laser forming of lime coated plain carbon steel using finite element method. Materials Today: Proceedings, 28, 1943–1950. doi:10.1016/j.matpr.2020.05.411.
  19. Abedi, H. R., & Hoseinpour Gollo, M. (2019). An experimental study of the effects of surface roughness and coating of Cr2O3 layer on the laser-forming process. Optics & Laser Technology, 109, 336–347. doi:10.1016/j.optlastec.2018.07.064.
Volume 2, Issue 3
July 2025
Pages 37-44
  • Receive Date: 09 March 2025
  • Revise Date: 12 May 2025
  • Accept Date: 30 May 2025
  • First Publish Date: 30 May 2025
  • Publish Date: 01 July 2025