Background: (Importance) Cerebrovascular accident (Stroke) is a term used in medicine to describe the process of cutting off blood supply to a portion of the brain, which causes tissue damage in the brain. Clots of blood that form in the brain's blood vessels and ruptures in the brain's blood vessels are the root causes of cerebrovascular accidents. Dizziness, numbness, weakness on one side of the body, and difficulties communicating verbally, writing, or comprehending language are among the symptoms of this condition. (Objective) This paper analyzes available studies on Cerebrovascular accident medication combinations. Method: (Data sources) This systematic review and network meta-analysis analyzed the Science Direct, Embase, Scopus, PubMed, Web of Science (ISI), and Google Scholar databases without a lower time limit and up to July 2022. A network meta-analysis examines the efficacy of this drug combination on genes/proteins that serve as progression targets for cerebrovascular accident. Results: In scenarios 1 through 3, the p-values for the suggested medication combination and Cerebrovascular accident were 0.036633, 0.007763, and 0.003638, respectively. Note that scenario I is the combination of medications initially indicated for the treatment of a cerebrovascular accident. The recommended combination of medications for cerebrovascular accidents is 10 times more effective. Conclusion: This systematic review and network meta-analysis demonstrates that the recommended medication combination decreases the p-value between cerebrovascular accident and the genes as potential progression targets, thereby enhancing the treatment for cerebrovascular accident. The optimal combination of medications improves community health and decreases per-person management costs.
Nazari, M. A., Abbasi, S., Rezaeian, M., Heysieattalab, S., Safakheil, H., Nasrabadi, A. M., Barzegar, Z., Joghataei, M. T., Asgharian, Z., Ghobadzadeh, F., Alizadeh, M., Amini Yeganeh, P., Khayyat Naghadehi, A., Azizi, K., Alizadeh Chakharlou, M., Nasiri, A., Davoudkhani, M., Rezaeian, M., Safakheil, M., … Farkhondeh Tale Navi, F. (2025). Iranian 6-11 years age population-based EEG, ERP, and cognition dataset. Scientific Data, 12(1). doi:10.1038/s41597-025-04624-6.
Safaei, D., Sobhani, A., & Kiaei, A. A. (2024). DeePLT: personalized lighting facilitates by trajectory prediction of recognized residents in the smart home. International Journal of Information Technology (Singapore), 16(5), 2987–2999. doi:10.1007/s41870-023-01665-1.
Heidarian, P., Jalali, A., Ghasemianrad, M., Jalali, R., & Ezzati, E. (2025). Global prevalence of sexual dysfunction in women with skin diseases: a systematic review and meta-analysis. BMC Women’s Health, 25(1). doi:10.1186/s12905-025-03625-2.
Salari, N., Fatahi, B., Valipour, E., Kazeminia, M., Fatahian, R., Kiaei, A., Shohaimi, S., & Mohammadi, M. (2022). Global prevalence of Duchenne and Becker muscular dystrophy: a systematic review and meta-analysis. Journal of Orthopaedic Surgery and Research, 17(1). doi:10.1186/s13018-022-02996-8.
Kiaei, A. A., & Khotanlou, H. (2017). Segmentation of medical images using mean value guided contour. Medical Image Analysis, 40, 111–132. doi:10.1016/j.media.2017.06.005.
Kalati, M. A., Shabani, H., Maghareh, M. S., Barzegar, Z., & Lashgari, R. (2025). Classification and Interpretation of Histopathology Images: Leveraging Ensemble of EfficientNetV1 and EfficientNetV2 Models. doi:10.21203/rs.3.rs-6040188/v1.
Di, G., Vázquez-Reyes, S., Díaz, B., Peña-Martinez, C., García-Culebras, A., Cuartero, M. I., Moraga, A., Pradillo, J. M., Esposito, E., Lo, E. H., Moro, M. A., & Lizasoain, I. (2025). Daytime DNase-I Administration Protects Mice From Ischemic Stroke Without Inducing Bleeding or tPA-Induced Hemorrhagic Transformation, Even With Aspirin Pretreatment. Stroke, 56(2), 527–532. doi:10.1161/STROKEAHA.124.049961.
Abdul-Rahman, T., Roy, P., Herrera-Calderón, R. E., Mueller-Gomez, J. L., Lisbona-Buzali, M., Ulusan, S., Awuah, W. A., Kuchma, N., Mehta, N., Agrawal, A., Altibi, A., & Gupta, R. (2025). Rivaroxaban to reduce the risk of major cardiovascular events in patients with chronic coronary artery disease or peripheral artery disease: a narrative review. Expert Opinion on Drug Safety, 24(3), 261–271. doi:10.1080/14740338.2025.2462652.
Ko, D., Chung, M. K., Evans, P. T., Benjamin, E. J., & Helm, R. H. (2025). Atrial Fibrillation. JAMA, 333(4), 329. doi:10.1001/jama.2024.22451.
Guo, C., Yang, Q., & Hu, B. (2023). Early anti-thrombotic therapy for acute ischemic stroke. Kexue Tongbao/Chinese Science Bulletin, 68(33), 4436–4438. doi:10.1360/TB-2023-0878.
Venketasubramanian, N., Kusuma, Y., Yeo, L. L. L., & Chan, B. (2024). Direct-Acting Oral Anticoagulant Dabigatran as a Bridging Therapy while Optimizing Warfarin Dosage for Cardioembolic Stroke. Cerebrovascular Diseases Extra, 15(1), 48–55. doi:10.1159/000543301.
Wang, X., Dong, Y., Dong, Q., & Wang, D. (2024). Should patients with minor strokes be given thrombolytics? Stroke and Vascular Neurology, svn-2024-003451. doi:10.1136/svn-2024-003451.
Murphy, A., Hamilton, L. A., Farley, K., Rowe, S. A., Christianson, T., & Medenwald, B. (2024). Low Dose Aspirin Initiation 18 Hours After Thrombolytic Therapy in Acute Ischemic Stroke. The Neurologist, 29(5), 294–298. doi:10.1097/NRL.0000000000000566.
Kume, H., Maeda, T., Tsukagoshi, E., Ogura, T., Ohmori, S., & Kurita, H. (2024). Cardiocerebral Infarction Presenting in a Neurosurgical Emergency: A Case Report and Literature Review. Cureus. doi:10.7759/cureus.65124.
Tabatabaei, S. G. H. , & Kiyaee, A. (2025). Recommending Drug Combinations using Reinforcement Learning to target Genes/proteins that cause Stroke: A comprehensive Systematic Review and Network Meta-analysis. Contributions of Science and Technology for Engineering, 2(2), 1-8. doi: 10.22080/cste.2025.28822.1021
MLA
Sayed Gholam Hassan Tabatabaei; A.A. Kiyaee. "Recommending Drug Combinations using Reinforcement Learning to target Genes/proteins that cause Stroke: A comprehensive Systematic Review and Network Meta-analysis", Contributions of Science and Technology for Engineering, 2, 2, 2025, 1-8. doi: 10.22080/cste.2025.28822.1021
HARVARD
Tabatabaei, S. G. H., Kiyaee, A. (2025). 'Recommending Drug Combinations using Reinforcement Learning to target Genes/proteins that cause Stroke: A comprehensive Systematic Review and Network Meta-analysis', Contributions of Science and Technology for Engineering, 2(2), pp. 1-8. doi: 10.22080/cste.2025.28822.1021
CHICAGO
S. G. H. Tabatabaei and A. Kiyaee, "Recommending Drug Combinations using Reinforcement Learning to target Genes/proteins that cause Stroke: A comprehensive Systematic Review and Network Meta-analysis," Contributions of Science and Technology for Engineering, 2 2 (2025): 1-8, doi: 10.22080/cste.2025.28822.1021
VANCOUVER
Tabatabaei, S. G. H., Kiyaee, A. Recommending Drug Combinations using Reinforcement Learning to target Genes/proteins that cause Stroke: A comprehensive Systematic Review and Network Meta-analysis. Contributions of Science and Technology for Engineering, 2025; 2(2): 1-8. doi: 10.22080/cste.2025.28822.1021