Detecting a breast mass is a common and stressful event for women. Although most breast masses are benign, the risk of malignancy highlights the importance of appropriate screening. Different imaging methods have different precisions and accuracies, so choosing an appropriate imaging method, especially for women with dense breast tissue, is very important. Since vascular structure regional temperatures differ between normal and abnormal tissues, thermography can detect masses earlier than conventional imaging methods. 237 cases including 152 healthy individuals and 85 cases with breast masses examined in this study. The raw recorded images of these cases are gray-levels which are given to a nonlinear transform to become colorful which increase the thermal contrast. Then these color scaled images are given to convolutional neural networks. The used networks in this research is AlexNet and GoogLeNet. The extracted features are given to different classifiers as input. The used classifiers in this study are KNN, SVM and NB. The best result was achieved when GoogLeNet and SVM were used together. The results of this study have remarkable accuracy and sensitivity which are 95.8% and 100%, respectively. The developed system combining nonlinear color scaling and deep learning shows potential as an effective tool for early breast screening.
Kakileti, S. T., Dalmia, A., & Manjunath, G. (2020). Exploring deep learning networks for tumour segmentation in infrared images. Quantitative InfraRed Thermography Journal, 17(3), 153–168. doi:10.1080/17686733.2019.1619355.
He, Z., Chen, Z., Tan, M., Elingarami, S., Liu, Y., Li, T., Deng, Y., He, N., Li, S., Fu, J., & Li, W. (2020). A review on methods for diagnosis of breast cancer cells and tissues. Cell Proliferation, 53(7). doi:10.1111/cpr.12822.
Liu, L., Hao, X., Song, Z., Zhi, X., Zhang, S., & Zhang, J. (2021). Correlation between family history and characteristics of breast cancer. Scientific reports, 11(1), 6360. doi:10.1038/s41598-021-85899-8.
Berg, W. A., Blume, J. D., Cormack, J. B., Mendelson, E. B., Lehrer, D., Böhm-Vélez, M., Pisano, E. D., Jong, R. A., Evans, W. P., Morton, M. J., Mahoney, M. C., Larsen, L. H., Barr, R. G., Farria, D. M., Marques, H. S., & Boparai, K. (2008). Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. Jama, 299(18), 2151–2163. doi:10.1001/jama.299.18.2151.
Yao, X., Wei, W., Li, J., Wang, L., Xu, Z. L., Wan, Y., Li, K., & Sun, S. (2014). A comparison of mammography, ultrasonography, and far-infrared thermography with pathological results in screening and early diagnosis of breast cancer. Asian Biomedicine, 8(1), 11–19. doi:10.5372/1905-7415.0801.257.
Jarvis, H., Mi, L., Patel, B., Cube, R. P., Pruthi, S., & Vegunta, S. (2024). Factors Influencing Patient Confidence in Screening Mammography. Journal of the American Board of Family Medicine, 36(6), 942–951. doi:10.3122/jabfm.2023.230055R1.
Prasad, S. N., & Houserkova, D. (2007). The role of various modalities in breast imaging. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 151(2), 209–218. doi:10.5507/bp.2007.036.
Husaini, M. A. S. Al, Habaebi, M. H., Hameed, S. A., Islam, M. R., & Gunawan, T. S. (2020). A Systematic Review of Breast Cancer Detection Using Thermography and Neural Networks. IEEE Access, 8, 208922–208937. doi:10.1109/ACCESS.2020.3038817.
Navid, M., Hamidpour, S. S. F., Khajeh-Khalili, F., & Alidoosti, M. (2020). A novel method to infrared thermal images vessel extraction based on fractal dimension. Infrared Physics & Technology, 107. doi:10.1016/j.infrared.2020.103297.
Kakileti, S. T., Manjunath, G., Madhu, H., & Ramprakash, H. V. (2017). Advances in Breast Thermography. New Perspectives in Breast Imaging, InTechOpen, London, United Kingdom. doi:10.5772/intechopen.69198.
Zavvar, T., Ridhawi, I. Al, & Abbas, A. (2023). Thermography-Based Early-Stage Breast Cancer Detection Using SVM. 2023 International Conference on Intelligent Data Science Technologies and Applications, IDSTA 2023, 27–34. doi:10.1109/IDSTA58916.2023.10317862.
Abdel-Nasser, M., Moreno, A., & Puig, D. (2019). Breast cancer detection in thermal infrared images using representation learning and texture analysis methods. Electronics (Switzerland), 8(1). doi:10.3390/electronics8010100.
Ahmed, A. A., Ali, M. A. S., & Selim, M. (2019). Bio-inspired based techniques for thermogram breast cancer classification. International Journal of Intelligent Engineering and Systems, 12(2), 114–124. doi:10.22266/IJIES2019.0430.12.
Zadeh, H. G., Haddadnia, J., Seryasat, O. R., & Isfahani, S. M. M. (2016). Segmenting breast cancerous regions in thermal images using fuzzy active contours. EXCLI Journal, 15(532), 532–550. doi:10.17179/excli2016-273.
Yousefi, B., Akbari, H., & Maldague, X. P. V. (2020). Detecting Vasodilation as Potential Diagnostic Biomarker in Breast Cancer Using Deep Learning-Driven Thermomics. Biosensors, 10(11). doi:10.3390/BIOS10110164.
Mammoottil, M. J., Kulangara, L. J., Cherian, A. S., Mohandas, P., Hasikin, K., & Mahmud, M. (2022). Detection of Breast Cancer from Five-View Thermal Images Using Convolutional Neural Networks. Journal of Healthcare Engineering, 2022, 15. doi:10.1155/2022/4295221.
Tamrin, H. R., Saniei, E., & Barough, M. S. (2023). Intelligent diagnosis of breast cancer through hybrid deep networks using thermography images. Journal of Health Informatics and Biomedical Engineering, 10(3), 260-268. doi:10.34172/jhbmi.2023.30
Lak, B., & Najafi, P. (2021). Breast cancer diagnosis using a combination of machine learning and machine vision methods in thermography images. Advanced Signal Processing, 5(1), 41-52. doi:20.1001.1.26763397.1400.5.1.5.0
Mohamed, N. A. E.-R. (2015). Breast Cancer Risk Detection Using Digital Infrared Thermal Images. International Journal of Bioinformatics and Biomedical Engineering, 1(2), 185–194.
Kandlikar, S. G., Perez-Raya, I., Raghupathi, P. A., Gonzalez-Hernandez, J. L., Dabydeen, D., Medeiros, L., & Phatak, P. (2017). Infrared imaging technology for breast cancer detection – Current status, protocols and new directions. International Journal of Heat and Mass Transfer, 108, 2303–2320. doi:10.1016/j.ijheatmasstransfer.2017.01.086.
Gonzalez-Hernandez, J. L., Recinella, A. N., Kandlikar, S. G., Dabydeen, D., Medeiros, L., & Phatak, P. (2019). Technology, application and potential of dynamic breast thermography for the detection of breast cancer. International Journal of Heat and Mass Transfer, 131, 558–573. doi:10.1016/j.ijheatmasstransfer.2018.11.089.
Al-Sabaawi, A., Hasan, R. I., Fadhel, M. A., Al-Shamma, O., & Alzubaidi, L. (2021). Employment of Pre-trained Deep Learning Models for Date Classification: A Comparative Study. International Conference on Intelligent Systems Design and Applications, 1351, 181–189. doi:10.1007/978-3-030-71187-0_17.
Pratap, T., & Kokil, P. (2019). Computer-aided diagnosis of cataract using deep transfer learning. Biomedical Signal Processing and Control, 53(101533). doi:10.1016/j.bspc.2019.04.010.
Huynh, B. Q., Li, H., & Giger, M. L. (2016). Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. Journal of Medical Imaging, 3(3), 034501. doi:10.1117/1.jmi.3.3.034501.
Elaraby, N., Barakat, S., & Rezk, A. (2023). A Novel Siamese Network for Few/Zero-Shot Handwritten Character Recognition Tasks. Computers, Materials and Continua, 74(1), 1837–1854. doi:10.32604/cmc.2023.032288.
Angriawan, M. (2023). Transfer Learning Strategies for Fine-Tuning Pretrained Convolutional Neural Networks in Medical Imaging. Research Journal of Computer Systems and Engineering, 4(2), 73–88. doi:10.52710/rjcse.79.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. doi:10.1145/3065386.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition. 7-12 June, 2015, Boston, United States.
Yang, Y., Yan, L. F., Zhang, X., Han, Y., Nan, H. Y., Hu, Y. C., Hu, B., Yan, S. L., Zhang, J., Cheng, D. L., Ge, X. W., Cui, G. Bin, Zhao, D., & Wang, W. (2018). Glioma grading on conventional MR images: A deep learning study with transfer learning. Frontiers in Neuroscience, 12, 804. doi:10.3389/fnins.2018.00804.
Chelghoum, R., Ikhlef, A., Hameurlaine, A., Jacquir, S. (2020). Transfer Learning Using Convolutional Neural Network Architectures for Brain Tumor Classification from MRI Images. Artificial Intelligence Applications and Innovations. AIAI 2020. IFIP Advances in Information and Communication Technology, vol 583. Springer, Cham, Switzerland. doi:10.1007/978-3-030-49161-1_17..
Cover, T. M., & Hart, P. E. (1967). Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory, 13(1), 21–27. doi:10.1109/TIT.1967.1053964.
Cortes, C. and Vapnik, V. (1995) Support-Vector Networks. Machine Learning, 20, 273-297. doi:10.1007/BF00994018.
Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach: A Modern Approach. Pearson, London, United Kingdom.
Liu, W., Wei, J., & Meng, Q. (2020). Comparisions on KNN, SVM, BP and the CNN for Handwritten Digit Recognition. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA), 587–590. doi:10.1109/aeeca49918.2020.9213482.
Roshanravan Yazdi, F. , Khalilzadeh, M. M. , Firouzi, F. , & Azarnoosh, M. (2025). Breast mass detection with nonlinear model of thermography images. Contributions of Science and Technology for Engineering, 2(3), 26-36. doi: 10.22080/cste.2025.28717.1012
MLA
Faezeh Roshanravan Yazdi; Mohammad Mahdi Khalilzadeh; Faramarz Firouzi; Mahdi Azarnoosh. "Breast mass detection with nonlinear model of thermography images", Contributions of Science and Technology for Engineering, 2, 3, 2025, 26-36. doi: 10.22080/cste.2025.28717.1012
HARVARD
Roshanravan Yazdi, F., Khalilzadeh, M. M., Firouzi, F., Azarnoosh, M. (2025). 'Breast mass detection with nonlinear model of thermography images', Contributions of Science and Technology for Engineering, 2(3), pp. 26-36. doi: 10.22080/cste.2025.28717.1012
CHICAGO
F. Roshanravan Yazdi , M. M. Khalilzadeh , F. Firouzi and M. Azarnoosh, "Breast mass detection with nonlinear model of thermography images," Contributions of Science and Technology for Engineering, 2 3 (2025): 26-36, doi: 10.22080/cste.2025.28717.1012
VANCOUVER
Roshanravan Yazdi, F., Khalilzadeh, M. M., Firouzi, F., Azarnoosh, M. Breast mass detection with nonlinear model of thermography images. Contributions of Science and Technology for Engineering, 2025; 2(3): 26-36. doi: 10.22080/cste.2025.28717.1012