[1] Ashraf, S., Nazemi, A., & AghaKouchak, A. (2021). Anthropogenic drought dominates groundwater depletion in Iran. Scientific Reports, 11(1), 9135. doi:10.1038/s41598-021-88522-y.
[2] Pinder, G. F. (2011). Groundwater hydrology. In Groundwater Quantity and Quality Management. John Wiley & Sons, Hoboken, United States. doi:10.1029/eo070i008p00114-04.
[3] Frappart, F., Papa, F., Famiglietti, J. S., Prigent, C., Rossow, W. B., & Seyler, F. (2008). Interannual variations of river water storage from a multiple satellite approach: A case study for the Rio Negro River basin. Journal of Geophysical Research Atmospheres, 113(21). doi:10.1029/2007JD009438.
[4] Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., & Wilson, C. R. (2008). Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resources Research, 44(2). doi:10.1029/2006WR005779.
[5] Velicogna, I., & Wahr, J. (2005). Greenland mass balance from GRACE. Geophysical Research Letters, 32(18), 1–4. doi:10.1029/2005GL023955.
[6] Sun, A. Y. (2013). Predicting groundwater level changes using GRACE data. Water Resources Research, 49(9), 5900–5912. doi:10.1002/wrcr.20421.
[7] Scibek, J., & Allen, D. M. (2006). Modeled impacts of predicted climate change on recharge and groundwater levels. Water Resources Research, 42(11). doi:10.1029/2005WR004742.
[8] Kinzelbach, W., Bauer, P., Siegfried, T., & Brunner, P. (2003). Sustainable groundwater management — problems and scientific tools. Episodes, 26(4), 279–284. doi:10.18814/epiiugs/2003/v26i4/002.
[9] Zhang, D., & Tong, J. (2023). Robust water level measurement method based on computer vision. Journal of Hydrology, 620. doi:10.1016/j.jhydrol.2023.129456.
[10] Adamowski, J., & Chan, H. F. (2011). A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1–4), 28–40. doi:10.1016/j.jhydrol.2011.06.013.
[11] Barzegar, R., Fijani, E., Asghari Moghaddam, A., & Tziritis, E. (2017). Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models. Science of The Total Environment, 599–600, 20–31. doi:10.1016/j.scitotenv.2017.04.189.
[12] Moghaddam, H. K., Moghaddam, H. K., Kivi, Z. R., Bahreinimotlagh, M., & Alizadeh, M. J. (2019). Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels. Groundwater for Sustainable Development, 9, 100237. doi:10.1016/j.gsd.2019.100237.
[13] Amiri, S., Rajabi, A., Shabanlou, S., Yosefvand, F., & Izadbakhsh, M. A. (2023). Prediction of groundwater level variations using deep learning methods and GMS numerical model. Earth Science Informatics, 16(4), 3227–3241. doi:10.1007/s12145-023-01052-1.
[14] Soltani, K., & Azari, A. (2022). Forecasting groundwater anomaly in the future using satellite information and machine learning. Journal of Hydrology, 612, 128052. doi:10.1016/j.jhydrol.2022.128052.
[15] Azizi, E., Yosefvand, F., Yaghoubi, B., Izadbakhsh, M. A., & Shabanlou, S. (2023). Modelling and prediction of groundwater level using wavelet transform and machine learning methods: A case study for the Sahneh Plain, Iran. Irrigation and Drainage, 72(3), 747–762. doi:10.1002/ird.2794.
[16] Alizadeh, M. J., Rajaee, T., & Motahari, M. (2017). Flow forecasting models using hydrologic and hydrometric data. Proceedings of the Institution of Civil Engineers: Water Management, 170(3), 150–162. doi:10.1680/jwama.14.00146.
[17] Motahari, M., Sotoodehnia, A., Nazari, B., & Yazdani, M. (2024). Development of a water resources utilization model and optimization of the patterns of rice genotypes with system dynamics approach. Applied Water Science, 14(11), 235. doi:10.1007/s13201-024-02295-z.
[18] Iran Meteorological Organization, Tehran, Iran. Available online: https://data.irimo.ir/ (accessed on May 2025).
[19] Iran Water Resources Management, Tehran, Iran. Available online: http://wrs.wrm.ir/amar/register.asp (accessed on may 2025).
[20] Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & Toll, D. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394. doi:10.1175/BAMS-85-3-381.
[21] Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, United States. Available online: https://disc.gsfc.nasa.gov/datasets (accessed on may 2025).
[22] Mousavimehr, S. M., & Kavianpour, M. R. (2025). A non-stationary downscaling and gap-filling approach for GRACE/GRACE-FO data under climatic and anthropogenic influences. Applied Water Science, 15(5), 1–15. doi:10.1007/s13201-025-02427-z.
[23] Seber, G. A., & Lee, A. J. (2003). Prediction and Model Selection. Linear Regression Analysis, John Wiley & Sons, Hoboken, United States. doi:10.1002/9780471722199.ch12.
[24] Hoerl, A. E., & Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 12(1), 55–67. doi:10.1080/00401706.1970.10488634.
[25] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer Series in Statistics. Springerو New York, United States. doi:10.1007/978-0-387-84858-7.
[26] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. doi:10.1007/bf00994018.
[27] Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and regression trees. Chapman and Hall/CRC, New York, United States. doi:10.1201/9781315139470.
[28] Haykin, S. (2009). Neural networks and learning machines, 3/E. Pearson Education India, Chennai, India.
[29] Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. doi:10.1007/bf00058655.
[30] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. doi:10.1023/A:1010933404324.
[31] Freund, Y., & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. Proceedings of the 13th International Conference on Machine Learning, 96, 148–156. doi:10.1.1.133.1040.
[32] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. doi:10.1214/aos/1013203451.
[33] Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics and Data Analysis, 38(4), 367–378. doi:10.1016/S0167-9473(01)00065-2.
[34] Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. doi:10.1145/2939672.2939785.
[35] Alizadeh, M. J., Kavianpour, M. R., Kisi, O., & Nourani, V. (2017). A new approach for simulating and forecasting the rainfall-runoff process within the next two months. Journal of Hydrology, 548, 588–597. doi:10.1016/j.jhydrol.2017.03.032.
[36] Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm validation with a limited sample size. PLoS ONE, 14(11), 224365. doi:10.1371/journal.pone.0224365.
[37] Tao, H., Al-Sulttani, A. O., Salih Ameen, A. M., Ali, Z. H., Al-Ansari, N., Salih, S. Q., & Mostafa, R. R. (2020). Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting. Complexity, 2020(1), 8844367. doi:10.1155/2020/8844367.
[38] Müller, A. C., & Guido, S. (2016). Introduction to machine learning with Python: a guide for data scientists. O'Reilly Media, Inc, Sebastopol, United States.
[39] Mahesh, B. (2020). Machine Learning Algorithms - A Review. International Journal of Science and Research (IJSR), 9(1), 381–386. doi:10.21275/art20203995.
[40] Amanollah, H., Asghari, A., Mashayekhi, M., & Zahrai, S. M. (2023). Damage detection of structures based on wavelet analysis using improved AlexNet. Structures, 56, 105019. doi:10.1016/j.istruc.2023.105019.