Utilization of Recycled Carpet Waste in Clay Soil Mixtures: Mechanical Properties and Environmental Benefits

Document Type : Original Article

Authors

1 Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

2 Department of Civil Engineering, Bandar Anzali Branch, Islamic Azad University, Bandar Anzali, Iran

Abstract

In line with sustainable strategies for soil improvement, this study investigated the mechanical behavior of clay soil reinforced with various percentages of recycled carpet waste (RCW) through compaction, unconfined compressive strength (UCS), and direct shear tests (DST). The results indicated that with increasing RCW content, the maximum dry unit weight (MDUW) decreased, while the optimum moisture content (OMC) increased, primarily due to the lower specific gravity and greater water absorption capacity of the carpet fibers. The UCS and secant modulus at 50% of peak stress (E50) increased up to 1% RCW, reaching 216.7 kPa and 3342 kPa, respectively. However, beyond this content, both strength and stiffness declined, likely due to weakened internal bonding and increased void ratio in the soil-fiber mixture. In terms of shear strength parameters, both cohesion and the internal friction angle improved up to 1% RCW (70.2 kPa and 18.7°, respectively), followed by a decrease at higher dosages. These changes are attributed to the improved interlocking and bonding between soil particles and the distributed fibers at lower contents. Overall, incorporating RCW up to approximately 1% offers a practical and environmentally responsible approach for enhancing the engineering properties of clay soils.

Keywords


  • Abdel-Rahman, M.M. (2021). Review of Soil Improvement Techniques. Advancements in Geotechnical Engineering. Sustainable Civil Infrastructures. Springer, Cham, Switzerland. doi:10.1007/978-3-030-62908-3_14.
  • Fondjo, A. A., Theron, E., & Ray, R. P. (2021). Stabilization of Expansive Soils Using Mechanical and Chemical Methods: A Comprehensive Review. Civil Engineering and Architecture, 9(5), 1289–1294. doi:10.13189/cea.2021.090503.
  • Barman, D., & Dash, S. K. (2022). Stabilization of expansive soils using chemical additives: A review. Journal of Rock Mechanics and Geotechnical Engineering, 14(4), 1319–1342. doi:10.1016/j.jrmge.2022.02.011.
  • Malik, P., & Mishra, S. K. (2023). A comprehensive review of soil strength improvement using geosynthetics. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.05.710.
  • Chatrabhuj, & Meshram, K. (2024). Use of geosynthetic materials as soil reinforcement: an alternative eco-friendly construction material. Discover Civil Engineering, 1(1), 41. doi:10.1007/s44290-024-00050-6.
  • Umar, M., Kassim, K. A., & Ping Chiet, K. T. (2016). Biological process of soil improvement in civil engineering: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 767–774. doi:10.1016/j.jrmge.2016.02.004.
  • Wani, K. M. N. S., & Mir, B. A. (2020). Microbial geo-technology in ground improvement techniques: a comprehensive review. Innovative Infrastructure Solutions, 5(3), 82. doi:10.1007/s41062-020-00335-6.
  • Zhang, N., & Wang, Z. (2017). Review of soil thermal conductivity and predictive models. International Journal of Thermal Sciences, 117, 172–183. doi:10.1016/j.ijthermalsci.2017.03.013.
  • Gupta, S., & Kumar, S. (2023). A state-of-the-art review of the deep soil mixing technique for ground improvement. Innovative Infrastructure Solutions, 8(4), 129. doi:10.1007/s41062-023-01098-6.
  • Huang, Y., & Wang, L. (2016). Experimental studies on nanomaterials for soil improvement: a review. Environmental Earth Sciences, 75(6), 1–10. doi:10.1007/s12665-015-5118-8.
  • Onyelowe, K. C. (2019). Review on the role of solid waste materials in soft soils reengineering. Materials Science for Energy Technologies, 2(1), 46–51. doi:10.1016/j.mset.2018.10.004.
  • Shinde, B., Sangale, A., Pranita, M., Sanagle, J., & Roham, C. (2024). Utilization of waste materials for soil stabilization: A comprehensive review. Progress in Engineering Science, 1(2–3), 100009. doi:10.1016/j.pes.2024.100009.
  • Ahmad, A., Sutanto, M. H., Harahap, I. S. H., Al-Bared, M. A. M., & Khan, M. A. (2020). Feasibility of Demolished Concrete and Scraped Tires in Peat Stabilization - A Review on the Sustainable approach in Stabilization. 2020 2nd International Sustainability and Resilience Conference: Technology and Innovation in Building Designs, 1–5. doi:10.1109/IEEECONF51154.2020.9319953.
  • Shaheen, S. M., Hooda, P. S., & Tsadilas, C. D. (2014). Opportunities and challenges in the use of coal fly ash for soil improvements - A review. Journal of Environmental Management, 145, 249–267. doi:10.1016/j.jenvman.2014.07.005.
  • Iravanian, A., & Haider, A. B. (2020). Soil Stabilization Using Waste Plastic Bottles Fibers: A Review Paper. IOP Conference Series: Earth and Environmental Science, 614(1), 12082. doi:10.1088/1755-1315/614/1/012082.
  • Kazmi, D., Williams, D. J., & Serati, M. (2020). Waste glass in civil engineering applications—A review. International Journal of Applied Ceramic Technology, 17(2), 529–554. doi:10.1111/ijac.13434.
  • Rai, A. K., Singh, G., & Tiwari, A. K. (2020). Comparative study of soil stabilization with glass powder, plastic and e-waste: A review. Materials Today: Proceedings, 32, 771–776. doi:10.1016/j.matpr.2020.03.570.
  • Mistry, M. K., Shukla, S. J., & Solanki, C. H. (2021). Reuse of waste tyre products as a soil reinforcing material: a critical review. Environmental Science and Pollution Research, 28(20), 24940–24971. doi:10.1007/s11356-021-13522-4.
  • Sotayo, A., Green, S., & Turvey, G. (2015). Carpet recycling: A review of recycled carpets for structural composites. Environmental Technology & Innovation, 3, 97–107. doi:10.1016/j.eti.2015.02.004.
  • Wang, Y. (1999). Utilization of recycled carpet waste fibers for reinforcement of concrete and soil. Polymer-Plastics Technology and Engineering, 38(3), 533–546. doi:10.1080/03602559909351598.
  • Ghiassian, H., Poorebrahim, G., & Gray, D. H. (2004). Soil reinforcement with recycled carpet wastes. Waste Management & Research, 22(2), 108–114. doi:10.1177/0734242X04043938.
  • Miraftab, M., & Lickfold, A. (2008). Utilization of carpet waste in reinforcement of substandard soils. Journal of Industrial Textiles, 38(2), 167–174. doi:10.1177/1528083708091064.
  • Shahnazari Habib, Ghiasian H., Nourzad A., Shafiei A., Tabarsa A.R.*, J. R. (2009). Shear Modulus of Silty Sand Reinforced by Carpet Waste Strips. Journal of Seismology and Earthquake Engineering, 11(3), 133-142. https://www.jsee.ir/article_240594.html
  • Mirzababaei, M., Miraftab, M., Mohamed, M., & McMahon, P. (2013). Unconfined Compression Strength of Reinforced Clays with Carpet Waste Fibers. Journal of Geotechnical and Geoenvironmental Engineering, 139(3), 483–493. doi:10.1061/(asce)gt.1943-5606.0000792.
  • Mirzababaei, M., Miraftab, M., Mohamed, M., & McMahon, P. (2013). Impact of Carpet Waste Fibre Addition on Swelling Properties of Compacted Clays. Geotechnical and Geological Engineering, 31(1), 173–182. doi:10.1007/s10706-012-9578-2.
  • Choobbasti, A. J., Samakoosh, M. A., & Kutanaei, S. S. (2019). Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers. Construction and Building Materials, 211, 1094–1104. doi:10.1016/j.conbuildmat.2019.03.306.
  • Eshghi, P., & Shalkoohy, A. J. (2022). Laboratory evaluation of the effect of polymer carpet waste on geotechnical properties of Bandar Anzali sandy soil. Iranian Journal of Engineering Geology, 15(1), 131–134.
  • Eshghi, P., Niri, H. G., & Pourdada, A. (2025). Assessing the impact of recycled carpet waste (RCW) on unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) in cement-stabilized sandy soil: an experimental study. Journal of Building Pathology and Rehabilitation, 10(1), 1–13. doi:10.1007/s41024-025-00577-w.
  • ASTM D422-63(2007). (2014). Standard Test Method for Particle-Size Analysis of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D0422-63R07.
  • ASTM D2487-17e1. (2025). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17E01.
  • ASTM D854-14. (2023). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer (Withdrawn 2023). ASTM International, Pennsylvania, United States. doi:10.1520/D0854-14.
  • ASTM D4318-17e1. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.
  • ASTM D698-12e2. (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12E02.
  • ASTM D2166/D2166M-13. (2016). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, Pennsylvania, United States. doi:10.1520/D2166_D2166M-13.
  • ASTM D3080/D3080M-11. (2020). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions (Withdrawn 2020). doi:10.1520/D3080_D3080M-11.
  • Sim, J., & Prabhu, V. (2018). The life cycle assessment of energy and carbon emissions on wool and nylon carpets in the United States. Journal of Cleaner Production, 170, 1231–1243. doi:10.1016/j.jclepro.2017.09.203.
  • Simon, A., Tripathi, A., Surehali, S., & Neithalath, N. (2023). Carpet fiber recycling in regular-use concrete mixtures and associated life cycle analysis. Waste Management Bulletin, 1(3), 103–114. doi:10.1016/j.wmb.2023.07.005.
  • Ryłko-Polak, I., Komala, W., & Białowiec, A. (2022). The Reuse of Biomass and Industrial Waste in Biocomposite Construction Materials for Decreasing Natural Resource Use and Mitigating the Environmental Impact of the Construction Industry: A Review. Materials, 15(12), 4078. doi:10.3390/ma15124078.
  • Maitlo, G., Ali, I., Maitlo, H. A., Ali, S., Unar, I. N., Ahmad, M. B., Bhutto, D. K., Karmani, R. K., Naich, S. ur R., Sajjad, R. U., Ali, S., & Afridi, M. N. (2022). Plastic Waste Recycling, Applications, and Future Prospects for a Sustainable Environment. Sustainability (Switzerland), 14(18), 11637. doi:10.3390/su141811637.
  • Parvaresh, F., & Amini, M. H. (2024). Application of circular economy for sustainable waste management in the carpet industry. International Journal of Research in Industrial Engineering, 13(2), 188–206. doi:10.22105/riej.2024.426147.1405.
  • Zaman, A. U. (2016). A comprehensive study of the environmental and economic benefits of resource recovery from global waste management systems. Journal of Cleaner Production, 124, 41–50. doi:10.1016/j.jclepro.2016.02.086.
  • Peng, X., Jiang, Y., Chen, Z., Osman, A. I., Farghali, M., Rooney, D. W., & Yap, P. S. (2023). Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: a review. Environmental Chemistry Letters, 21(2), 765–801. doi:10.1007/s10311-022-01551-5.
  • Chen, L., Yang, M., Chen, Z., Xie, Z., Huang, L., Osman, A. I., Farghali, M., Sandanayake, M., Liu, E., Ahn, Y. H., Al-Muhtaseb, A. H., Rooney, D. W., & Yap, P.-S. (2024). Conversion of waste into sustainable construction materials: A review of recent developments and prospects. Materials Today Sustainability, 27, 100930. doi:10.1016/j.mtsust.2024.100930.
  • Wang, M., He, X., & Yang, K. (2023). Mechanical Properties and Damage Characteristics of Coal-Based Solid Waste Paste Filling Materials with Different Moisture Content. Sustainability (Switzerland), 15(2), 1523. doi:10.3390/su15021523.
  • Abdulkareem, O. A., Mustafa Al Bakri, A. M., Kamarudin, H., Khairul Nizar, I., & Saif, A. A. (2014). Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Construction and Building Materials, 50, 377–387. doi:10.1016/j.conbuildmat.2013.09.047.
  • Xuan, W., Chen, X., Yang, G., Dai, F., & Chen, Y. (2018). Impact behavior and microstructure of cement mortar incorporating waste carpet fibers after exposure to high temperatures. Journal of Cleaner Production, 187, 222–236. doi:10.1016/j.jclepro.2018.03.183.
  • Mohammadhosseini, H., Lim, N. H. A. S., Sam, A. R. M., & Samadi, M. (2018). Effects of Elevated Temperatures on Residual Properties of Concrete Reinforced with Waste Polypropylene Carpet Fibres. Arabian Journal for Science and Engineering, 43(4), 1673–1686. doi:10.1007/s13369-017-2681-1
Volume 2, Issue 2
May 2025
Pages 23-31
  • Receive Date: 09 April 2025
  • Revise Date: 21 April 2025
  • Accept Date: 23 April 2025
  • First Publish Date: 23 April 2025
  • Publish Date: 27 May 2025