A Framework for Alzheimer’s Diagnosis Using Dempster-Shafer Theory and Multimodal MRI Fusion of White and Gray Matter

Document Type : Original Article

Authors

1 Babol medical university

2 Faculty of Engineering & Technology, University of Mazandaran, Babolsar, Iran

Abstract

Alzheimer's disease (AD) is a common neurodegenerative disorder that requires early diagnosis for effective treatment. MRI data provides valuable insights into brain structure, which can assist in diagnosing the disease. However, traditional diagnostic methods often face errors due to expert limitations and data uncertainty. To address this issue, we propose a Computer-Aided Diagnosis (CAD) system that can automatically identify the disease. Moreover, since MRI images inherently contain uncertainty, the proposed method offers a solution to minimize this uncertainty. In the proposed method, after performing preprocessing, feature extraction, and selection steps, the information obtained from brain white matter (WM) and gray matter (GM) is combined. This combination is achieved using the Evidence Theory and Dempster-Shafer Theory (DST). In this theory, mass functions are employed instead of probability functions. Subsequently, three different classifiers are applied separately in the final stage to the combined data. Experimental results demonstrate that combining GM and WM data using DST achieves higher accuracy compared to using either data type alone. This fusion-based method presents a reliable and effective approach for improving Alzheimer's diagnosis. Our proposed method achieved 91% accuracy in three different binary classification cases using the LDA classifier when distinguishing between AD and Normal Control (NC) groups. This result, obtained by combining WM and GM data, demonstrated a significant improvement compared to using each data type independently.

Keywords


  • Rayathala, J., C, K. K., & P, V. (2022). Review on Alzheimer’s disease: past, present and future. Journal of Innovations in Applied Pharmaceutical Science (JIAPS), 28–31. doi:10.37022/jiaps.v7i1.274.
  • Grossberg, G. T. (2003). Diagnosis and treatment of Alzheimer’s disease. Journal of Clinical Psychiatry, 64 (suppl 9), 3–6. doi:10.1212/wnl.64.12_suppl_3.s34.
  • Edupuganti, V., Mardani, M., Vasanawala, S., & Pauly, J. (2021). Uncertainty Quantification in Deep MRI Reconstruction. IEEE Transactions on Medical Imaging, 40(1), 239–250. doi:10.1109/TMI.2020.3025065.
  • Lohar, M. (2018). A survey on classification methods of brain MRI for Alzheimer’s disease. Journal of King Saud University - Computer and Information Sciences, 7(5), 339–348.
  • Bottero, V., Powers, D., Yalamanchi, A., Quinn, J. P., & Potashkin, J. A. (2021). Key disease mechanisms linked to alzheimer’s disease in the entorhinal cortex. International Journal of Molecular Sciences, 22(8), 3915. doi:10.3390/ijms22083915.
  • Sato, R., Kudo, K., Udo, N., Matsushima, M., Yabe, I., Yamaguchi, A., Tha, K. K., Sasaki, M., Harada, M., Matsukawa, N., Amemiya, T., Kawata, Y., Bito, Y., Ochi, H., & Shirai, T. (2022). A diagnostic index based on quantitative susceptibility mapping and voxel-based morphometry may improve early diagnosis of Alzheimer’s disease. European Radiology, 32(7), 4479–4488. doi:10.1007/s00330-022-08547-3.
  • Huang, H., Zheng, S., Yang, Z., Wu, Y., Li, Y., Qiu, J., Cheng, Y., Lin, P., Lin, Y., Guan, J., Mikulis, D. J., Zhou, T., & Wu, R. (2023). Voxel-based morphometry and a deep learning model for the diagnosis of early Alzheimer’s disease based on cerebral gray matter changes. Cerebral Cortex, 33(3), 754–763. doi:10.1093/cercor/bhac099.
  • Saha, C., Figley, C. R., Dastgheib, Z., Lithgow, B. J., & Moussavi, Z. (2024). Gray and white matter voxel-based morphometry of Alzheimer’s disease with and without significant cerebrovascular pathologies. Neuroscience Insights, 19. doi:10.1177/26331055231225657.
  • Ghasemi, J., Ghaderi, R., Karami Mollaei, M. R., & Hojjatoleslami, S. A. (2013). A novel fuzzy Dempster-Shafer inference system for brain MRI segmentation. Information Sciences, 223, 205–220. doi:10.1016/j.ins.2012.08.026.
  • Tavakoli, F., & Ghasemi, J. (2018). Brain MRI segmentation by combining different MRI modalities using Dempster- Shafer theory. IET Image Processing, 12(8), 1322–1330. doi:10.1049/iet-ipr.2017.0473.
  • Razi, S., Karami Mollaei, M. R., & Ghasemi, J. (2019). A novel method for classification of BCI multi-class motor imagery task based on Dempster–Shafer theory. Information Sciences, 484, 14–26. doi:10.1016/j.ins.2019.01.053.
  • Ray, D., Majumder, D. D., & Das, A. (2010). Synergistic Study of Alzheimer Diseased Brain MRI with PET and SPECT Images using Shape based Registration and Fuzzy-Dempster Shafer Evidence Accumulation Model. International Journal of Computer Applications, 12(7), 18–25. doi:10.5120/1691-2120.
  • Dinov, I. D., Valentino, D., Shin, B. C., Konstantinidis, F., Hu, G., MacKenzie-Graham, A., Lee, E.-F., Shattuck, D., Ma, J., Schwartz, C., & Toga, A. W. (2006). LONI Visualization Environment. Journal of Digital Imaging, 19(2), 148–158. doi:10.1007/s10278-006-0266-8.
  • Ding, X., Charnigo, R. J., Schmitt, F. A., Kryscio, R. J., & Abner, E. L. (2019). Evaluating trajectories of episodic memory in normal cognition and mild cognitive impairment: Results from ADNI. PLoS ONE, 14(2), 212435. doi:10.1371/journal.pone.0212435.
  • Wyman, B. T., Harvey, D. J., Crawford, K., Bernstein, M. A., Carmichael, O., Cole, P. E., Crane, P. K., DeCarli, C., Fox, N. C., Gunter, J. L., Hill, D., Killiany, R. J., Pachai, C., Schwarz, A. J., Schuff, N., Senjem, M. L., Suhy, J., Thompson, P. M., … Weiner, M. (2012). Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimer’s & Dementia, 9(3), 332–337. doi:10.1016/j.jalz.2012.06.004.
  • Sambath Kumar, S., & Nandhini, M. (2022). Automated Classification of Alzheimer’s Disease Using MRI and Transfer Learning. Mobile Computing and Sustainable Informatics, Springer, Singapore. doi:10.1007/978-981-16-1866-6_47.
  • Demšar, U., Harris, P., Brunsdon, C., Fotheringham, A. S., & McLoone, S. (2013). Principal Component Analysis on Spatial Data: An Overview. Annals of the Association of American Geographers, 103(1), 106–128. doi:10.1080/00045608.2012.689236.
  • Sudharsan, M., & Thailambal, G. (2023). Alzheimer’s disease prediction using machine learning techniques and principal component analysis (PCA). Materials Today: Proceedings, 81, 182–190. doi:10.1016/j.matpr.2021.03.061.
  • Khedher, L., Ramírez, J., Górriz, J. M., Brahim, A., & Segovia, F. (2015). Early diagnosis of Alzheimer׳s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images. Neurocomputing, 151, 139–150. doi:10.1016/j.neucom.2014.09.072.
  • Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86. doi:10.1162/jocn.1991.3.1.71.
  • Álvarez, I., Górriz, J. M., Ramírez, J., Salas-Gonzalez, D., López, M., Puntonet, C. G., & Segovia, F. (2009). Alzheimer’s diagnosis using eigenbrains and support vector machines. Electronics Letters, 45(7), 342–343. doi:10.1049/el.2009.3415.
  • Papoulis, A. (1984). Bayes’ theorem in statistics and Bayes’ theorem in statistics (reexamined). Probability, random variables, and stochastic processes (2nd Ed). McGraw-Hill, New York United States.
  • Bhagyashree, S. R., & Sheshadri, H. S. (2018). Diagnosis of Alzheimer’s disease using Naive Bayesian Classifier. Neural Computing and Applications, 29(1), 123–132. doi:10.1007/s00521-016-2416-3.
  • Han, J., Kamber, M., & Pei, J. (2011). Data Preprocessing. Data mining: Concepts and techniques (3rd). Morgan Kaufmann Series in Data Management Systems, Burlington, United States. doi:10.1016/b978-0-12-381479-1.00003-4
  • Srivastava, S., Gupta, M. R., & Frigyik, B. A. (2007). Bayesian quadratic discriminant analysis. Journal of Machine Learning Research, 8(6), 1277–1305.
  • Tharwat, A. (2016). Linear vs. quadratic discriminant analysis classifier: a tutorial. International Journal of Applied Pattern Recognition, 3(2), 145. doi:10.1504/ijapr.2016.079050.
  • Shafer, G. (1976). A mathematical theory of evidence. Princeton university press, Princeton, United States. doi:10.1515/9780691214696.
  • Du, Y.-W., & Zhong, J.-J. (2021). Generalized combination rule for evidential reasoning approach and Dempster–Shafer theory of evidence. Information Sciences, 547, 1201–1232. doi:10.1016/j.ins.2020.07.072.
  • Halpern, J. Y., & Fagin, R. (1992). Two views of belief: belief as generalized probability and belief as evidence. Artificial Intelligence, 54(3), 275–317. doi:10.1016/0004-3702(92)90048-3.
  • Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. doi:10.1016/j.neuroimage.2007.07.007.
  • Colloby, S. J., Elder, G. J., Rabee, R., O’Brien, J. T., & Taylor, J. (2016). Structural grey matter changes in the substantia innominata in Alzheimer’s disease and dementia with Lewy bodies: a DARTEL‐VBM study. International Journal of Geriatric Psychiatry, 32(6), 615–623. doi: 10.1002/gps.4500.
  • Ghasemi, J., Karami Mollaei, M. R., Ghaderi, R., & Hojjatoleslami, A. (2012). Brain tissue segmentation based on spatial information fusion by Dempster-Shafer theory. Journal of Zhejiang University SCIENCE C, 13(7), 520–533. doi:10.1631/jzus.c1100288.
  • Peng, Y., Kou, G., Chen, Z., & Shi, Y. (2004). Cross-Validation and Ensemble Analyses on Multiple-Criteria Linear Programming Classification for Credit Cardholder Behavior. Computational Science - ICCS 2004. ICCS 2004. Lecture Notes in Computer Science, vol 3039. Springer, Heidelberg, Germany. doi:10.1007/978-3-540-25944-2_120.
  • Zu, C., Jie, B., Liu, M., Chen, S., Shen, D., Zhang, D., & the Alzheimer’s Disease Neuroimaging Initiative. (2016). Label-aligned multi-task feature learning for multimodal classification of Alzheimer’s disease and mild cognitive impairment. Brain Imaging and Behavior, 10(4), 1148–1159. doi:10.1007/s11682-015-9480-7.
  • Beheshti, I., Maikusa, N., Daneshmand, M., Matsuda, H., Demirel, H., & Anbarjafari, G. (2017). Classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion using histogram-based analysis of patient-specific anatomical brain connectivity networks. Journal of Alzheimer’s Disease, 60(1), 295–304. doi:10.3233/JAD-161080.
  • Cui, R., Liu, M., & Li, G. (2018). Longitudinal analysis for Alzheimer’s disease diagnosis using RNN. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 1398–1401. doi:10.1109/ISBI.2018.8363833.
  • Vaithinathan, K., & Parthiban, L. (2019). A Novel Texture Extraction Technique with T1 Weighted MRI for the Classification of Alzheimer’s Disease. Journal of Neuroscience Methods, 318, 84–99. doi:10.1016/j.jneumeth.2019.01.011.
  • Zhou, P., Jiang, S., Yu, L., Feng, Y., Chen, C., Li, F., Liu, Y., & Huang, Z. (2021). Use of a Sparse-Response Deep Belief Network and Extreme Learning Machine to Discriminate Alzheimer’s Disease, Mild Cognitive Impairment, and Normal Controls Based on Amyloid PET/MRI Images. Frontiers in Medicine, 7. doi:10.3389/fmed.2020.621204.
  • Zarei, A., Keshavarz, A., Jafari, E., Nemati, R., Farhadi, A., Gholamrezanezhad, A., Rostami, H., & Assadi, M. (2024). Automated classification of Alzheimer’s disease, mild cognitive impairment, and cognitively normal patients using 3D convolutional neural network and radiomic features from T1-weighted brain MRI: A comparative study on detection accuracy. Clinical Imaging, 115, 110301. doi:10.1016/j.clinimag.2024.110301
Volume 2, Issue 1
March 2025
Pages 28-36
  • Receive Date: 17 March 2025
  • Revise Date: 28 March 2025
  • Accept Date: 30 March 2025
  • First Publish Date: 30 March 2025
  • Publish Date: 30 March 2025