Improving the Seismic Performance of Precast Post-Tensioned RC Shear Walls by applying FRP Sheets

Document Type : Original Article

Authors

1 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

2 Water Studies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.

Abstract

This paper refers to a FEM-based parametric study of the influence of FRP sheets on the performance of post-tensioned RC shear walls due to lateral loads. Based on this, changes in the length (85 and 170 cm), width (20 and 40 cm), and angle of FRP sheet arrangement relative to the horizontal axis (0°,45° and 90°) have been used as parameters affecting the performance of post-tensioned RC shear walls against lateral loads. In this regard, an experimental campaign taken from the literature is introduced. A FE model is created to simulate the experiments. The results of these experiments are compared with the FE model for validation purposes. Afterwards, FRP sheets are incorporated into the FE model. The main innovation refers to a sensitivity analysis of the influence of different geometries of the FRP sheets on the performance of the wall. Results are obtained while using FRP sheets of different parameters. It is concluded that FRP sheets exhibiting larger width, and angle of inclination correspond to an overall better lateral load bearing capacity of the post-tensioned shear walls. This capacity increase varies from 1.5% to above and will reach nearly 10% in the best case.

Keywords


  • Palermo, D., & Vecchio, F. J. (2002). Behavior of three-dimensional reinforced concrete shear walls. ACI Structural Journal, 99(1), 81–89. doi:10.14359/11038.
  • Zhu, Z., & Guo, Z. (2016). Experiments on hybrid precast concrete shear walls emulating monolithic construction with different amounts of posttensioned strands and different debond lengths of grouted reinforcements. Advances in Materials Science and Engineering, 2016(6802503). doi:10.1155/2016/6802503.
  • Erkmen, B., & Schultz, A. E. (2009). Self-Centering Behavior of Unbonded, Post-Tensioned Precast Concrete Shear Walls. Journal of Earthquake Engineering, 13(7), 1047–1064. doi:10.1080/13632460902859136.
  • Singhal, S., Chourasia, A., Chellappa, S., & Parashar, J. (2019). Precast reinforced concrete shear walls: State of the art review. Structural Concrete, 20(3), 886–898. doi:10.1002/suco.201800129.
  • Greifenhagen, C., & Lestuzzi, P. (2005). Static cyclic tests on lightly reinforced concrete shear walls. Engineering Structures, 27(11), 1703–1712. doi:10.1016/j.engstruct.2005.06.008.
  • Boulekbache, B., Hamrat, M., Chemrouk, M., & Amziane, S. (2012). Influence of yield stress and compressive strength on direct shear behaviour of steel fibre-reinforced concrete. Construction and Building Materials, 27(1), 6–14. doi:10.1016/j.conbuildmat.2011.07.015.
  • Sakr, M. A., El-Khoriby, S. R., Khalifa, T. M., & Nagib, M. T. (2017). Modeling of RC shear walls strengthened by FRP composites. Structural Engineering and Mechanics, 61(3), 407–417. doi:10.12989/sem.2017.61.3.407.
  • El-Sokkary, H., Galal, K., Ghorbanirenani, I., Léger, P., & Tremblay, R. (2013). Shake Table Tests on FRP-Rehabilitated RC Shear Walls. Journal of Composites for Construction, 17(1), 79–90. doi:10.1061/(asce)cc.1943-5614.0000312.
  • Cortés-Puentes, W. L., & Palermo, D. (2012). Modeling of RC Shear Walls Retrofitted with Steel Plates or FRP Sheets. Journal of Structural Engineering, 138(5), 602–612. doi:10.1061/(asce)st.1943-541x.0000466.
  • Deng, K., Pan, P., Shen, S., Wang, H., & Feng, P. (2018). Experimental Study of FRP-Reinforced Slotted RC Shear Walls under Cyclic Loading. Journal of Composites for Construction, 22(4). doi:10.1061/(asce)cc.1943-5614.0000855.
  • Shen, D., Yang, Q., Jiao, Y., Cui, Z., & Zhang, J. (2017). Experimental investigations on reinforced concrete shear walls strengthened with basalt fiber-reinforced polymers under cyclic load. Construction and Building Materials, 136, 217–229. doi:10.1016/j.conbuildmat.2016.12.102.
  • Triantafillou, T. C. (1998). Strengthening of Masonry Structures Using Epoxy-Bonded FRP Laminates. Journal of Composites for Construction, 2(2), 96–104. doi:10.1061/(asce)1090-0268(1998)2:2(96).
  • Sonobe, Y., Fukuyama, H., Okamoto, T., Kani, N., Kimura, K., Kobayashi, K., Masuda, Y., Matsuzaki, Y., Mochizuki, S., Nagasaka, T., Shimizu, A., Tanano, H., Tanigaki, M., & Teshigawara, M. (1997). Design Guidelines of FRP Reinforced Concrete Building Structures. Journal of Composites for Construction, 1(3), 90–115. doi:10.1061/(asce)1090-0268(1997)1:3(90).
  • Lombard, J. C. (1999). Seismic strengthening and repair of reinforced concrete shear walls using externally bonded carbon fibre tow sheets. PhD Thesis, Carleton University, Ottawa, Canada.
  • Khalifa, A., Gold, W. J., Nanni, A., & M.I., A. A. (1998). Contribution of Externally Bonded FRP to Shear Capacity of RC Flexural Members. Journal of Composites for Construction, 2(4), 195–202. doi:10.1061/(asce)1090-0268(1998)2:4(195).
  • Mander, J. B., & Cheng, C. T. (1997). Seismic resistance of bridge piers based on damage avoidance design. Seismic resistance of bridge piers based on damage avoidance design. Technical Report NCEER (97-0014), National Center for Earthquake Engineering Research (NCEER), University at Buffalo, new York, United States.
  • Priestley, M. J. N., Sritharan, S. (Sri), Conley, J. R., & Stefano Pampanin, S. (1999). Preliminary Results and Conclusions From the PRESSS Five-Story Precast Concrete Test Building. PCI Journal, 44(6), 42–67. doi:10.15554/pcij.11011999.42.67.
  • Tanyeri, A. C. (2014). Seismic performance and modeling of reinforced concrete and post-tensioned precast concrete shear walls. PhD Thesis, University of California, Berkeley, United States.
  • Smith, B. J., Kurama, Y. C., & McGinnis, M. J. (2011). Design and Measured Behavior of a Hybrid Precast Concrete Wall Specimen for Seismic Regions. Journal of Structural Engineering, 137(10), 1052–1062. doi:10.1061/(asce)st.1943-541x.0000327.
  • Kurama, Y., Sause, R., Pessiki, S., & Lu, L. W. (1999). Lateral load behavior and seismic design of unbonded post-tensioned precast concrete walls. ACI Structural Journal, 96(4), 622–632. doi:10.14359/700.
  • Holden, T., Restrepo, J., & Mander, J. B. (2003). Seismic Performance of Precast Reinforced and Prestressed Concrete Walls. Journal of Structural Engineering, 129(3), 286–296. doi:10.1061/(asce)0733-9445(2003)129:3(286).
  • Restrepo, J. I., & Rahman, A. (2007). Seismic Performance of Self-Centering Structural Walls Incorporating Energy Dissipators. Journal of Structural Engineering, 133(11), 1560–1570. doi:10.1061/(asce)0733-9445(2007)133:11(1560).
  • Perez, F. J., Sause, R., & Pessiki, S. (2007). Analytical and Experimental Lateral Load Behavior of Unbonded Posttensioned Precast Concrete Walls. Journal of Structural Engineering, 133(11), 1531–1540. doi:10.1061/(asce)0733-9445(2007)133:11(1531).
  • Perez, F. J., Pessiki, S., & Sause, R. (2013). Experimental lateral load response of unbonded post-tensioned precast concrete walls. ACI Structural Journal, 110(6), 1045–1055. doi:10.14359/51686159.
  • Kuzik, M. D., Elwi, A. E., & Cheng, J. J. R. (2003). Cyclic Flexure Tests of Masonry Walls Reinforced with Glass Fiber Reinforced Polymer Sheets. Journal of Composites for Construction, 7(1), 20–30. doi:10.1061/(asce)1090-0268(2003)7:1(20).
  • Smith, S. T., Hu, S., Kim, S. J., & Seracino, R. (2011). FRP-strengthened RC slabs anchored with FRP anchors. Engineering Structures, 33(4), 1075–1087. doi:10.1016/j.engstruct.2010.11.018.
  • Saloo, M., & Kabir, M. Z. (2016, October). Evaluation of Shear-Deficient RC Beams Strengthened by Externally Bonded FRP Sheets Subjected to Impact Loading. Proceedings of the 5th National and 1st International Conference on Modern Materials and Structures in Civil Engineering, 26-27 October, 2016, Tehran, Iran.
  • Meghdadian, M., Masoodi, A. R., & Ghalehnovi, M. (2024). Experimental study to unraveling the seismic behavior of CFRP retrofitting composite coupled shear walls for enhanced resilience. Composites Part C: Open Access, 15(100523). doi:10.1016/j.jcomc.2024.100523.
  • Heydari, P., Mostofinejad, D., Eftekhar, M. R., & Saljoughian, A. (2024). Seismic flexural rehabilitation of RC coupling beams with FRP sheets: Evaluation of EBROG technique. Structures, 68, 107076. doi:10.1016/j.istruc.2024.107076.
  • Kent, D. C., & Park, R. (1972). Closure to “Flexural Members with Confined Concrete.” Journal of the Structural Division, 98(12), 2805–2810. doi:10.1061/jsdeag.0003404.
Volume 1, Issue 4
December 2024
Pages 35-43
  • Receive Date: 20 December 2024
  • Revise Date: 09 February 2025
  • Accept Date: 20 February 2025
  • First Publish Date: 20 February 2025
  • Publish Date: 06 March 2025