Experimental Study on Strength Properties of MICP-Treated Silty Sand

Document Type : Original Article

Author

Department of Civil Engineering, Faculty of Engineering, University of Guilan, Persian Gulf Highway, P.B, Rasht 41996‑13776, Guilan, Iran

Abstract

Microbially induced carbonate precipitation (MICP) using ureolytic bacteria has emerged as a promising technique for geotechnical applications, including soil stabilization, land remediation, and groundwater control. This bio-mediated process relies on urease activity to hydrolyze urea, leading to calcium carbonate precipitation, which enhances soil strength and stiffness. In this study, the mechanical behavior of silica sand treated with MICP was investigated under varying cementation concentrations (µ) (0.25–1 mol/L), cementation ratios (β) (10–90%), and injection cycles (3, 14, and 21). Key parameters evaluated included unconfined compressive strength (UCS), secant modulus (E50), and calcium carbonate content. The results demonstrated a significant correlation between calcite content and mechanical properties, with optimal performance observed at 14.98% calcite content. This configuration yielded a UCS of 1030 kPa and an E50 of 389 MPa, achieved using Sporosarcina pasteurii, a β = 50%, and a µ = 0.75 mol/L over 21 days. Findings highlight the critical role of injection cycles and cementation concentration in achieving uniform calcium carbonate distribution and enhancing soil behavior. This study underscores the potential of MICP for tailored geotechnical solutions, providing valuable insights into optimizing bio-cementation processes.

Keywords


  • Abbasi, M., Hosseinpour, I., Barari, A., & Mirmoradi, S. H. (2025). Mechanical Properties of Silty Sand Treated with MICP Technique Subjected to Freeze-Thaw Cycles. Transportation Infrastructure Geotechnology, 12(1), 34. doi:10.1007/s40515-024-00468-6.
  • Zhang, X., Wang, H., Wang, Y., Wang, J., Cao, J., & Zhang, G. (2024). Improved methods, properties, applications and prospects of microbial induced carbonate precipitation (MICP) treated soil: A review. Biogeotechnics, 100123. doi:10.1016/j.bgtech.2024.100123.
  • Li, G., Zhang, Y. J., Hua, X. Q., Liu, J., & Liu, X. (2024). Mechanical properties of aeolian sand cemented via microbially induced calcite precipitation (MICP). Scientific Reports, 14(1), 22745. doi:10.1038/s41598-024-73986-5.
  • Zhu, T., He, R., Hosseini, S. M. J., He, S., Cheng, L., Guo, Y., & Guo, Z. (2024). Influence of precast microbial reinforcement on lateral responses of monopiles. Ocean Engineering, 307, 119493. doi:10.1016/j.oceaneng.2024.118211.
  • Wang, Z., Li, Y., Bai, L., Hou, C., Zheng, C., & Li, W. (2025). Biodegradation of polypropylene microplastics by Bacillus pasteurii isolated from a gold mine tailing. Emerging Contaminants, 11(1), 100397. doi:10.1016/j.emcon.2024.100397.
  • Yin, J., Qu, W., Yibulayimu, Z., & Qu, J. (2024). Enhancing aeolian sand stability using microbially induced calcite precipitation technology. Scientific Reports, 14(1), 23876. doi:10.1038/s41598-024-74170-5.
  • Lai, H. J., Cui, M. J., Wu, S. F., Yang, Y., & Chu, J. (2021). Retarding effect of concentration of cementation solution on biocementation of soil. Acta Geotechnica, 16(5), 1457–1472. doi:10.1007/s11440-021-01149-1.
  • Wang, Y., Chang, X., Zhang, G., Zeng, Z., Huang, X., Wang, M., & Ma, M. (2024). Pore structure of the mixed sedimentary reservoir of Permian Fengcheng Formation in the Hashan area, Junggar Basin. Scientific Reports, 14(1), 1–21. doi:10.1038/s41598-024-71646-2.
  • Ge, J., Zhao, W., Wang, S., Hu, S., & Chen, G. (2024). Study on the fluidity of the pore-fracture binary system in a tight sandstone reservoir-NMR. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 10(1). doi:10.1007/s40948-024-00810-9.
  • Gadhvi, M. S., Javia, B. M., Vyas, S. J., Patel, R., & Dudhagara, D. R. (2024). Bhargavaea beijingensis a promising tool for bio-cementation, soil improvement, and mercury removal. Scientific Reports, 14(1), 23976. doi:10.1038/s41598-024-75019-7.
  • Mujah, D., Cheng, L., & Shahin, M. A. (2019). Microstructural and Geomechanical Study on Biocemented Sand for Optimization of MICP Process. Journal of Materials in Civil Engineering, 31(4). doi:10.1061/(asce)mt.1943-5533.0002660.
  • ASTM D698-12(2021). (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12R21.
  • ASTM D2487-17. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi 10.1520/D2487-17.
  • Dagliya, M., Satyam, N., Sharma, M., & Garg, A. (2022). Experimental study on mitigating wind erosion of calcareous desert sand using spray method for microbially induced calcium carbonate precipitation. Journal of Rock Mechanics and Geotechnical Engineering, 14(5), 1556–1567. doi:10.1016/j.jrmge.2021.12.008.
  • [Liu, L., Liu, H., Stuedlein, A. W., Evans, T. M., & Xiao, Y. (2019). Strength, stiffness, and microstructure characteristics of biocemented calcareous sand. Canadian Geotechnical Journal, 56(10), 1502–1513. doi:10.1139/cgj-2018-0007.
  • Mitchell, J. K., & Santamarina, J. C. (2005). Biological Considerations in Geotechnical Engineering. Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1222–1233. doi:10.1061/(asce)1090-0241(2005)131:10(1222).
  • Chowdhury, R., Flentje, P., Bhattacharya, G. (2013). Geotechnics in the Twenty-First Century, Uncertainties and Other Challenges: With Particular Reference to Landslide Hazard and Risk Assessment. Proceedings of the International Symposium on Engineering under Uncertainty: Safety Assessment and Management (ISEUSAM - 2012). Springer, India. doi:10.1007/978-81-322-0757-3_2.
  • Chu, J., Stabnikov, V., & Ivanov, V. (2012). Microbially Induced Calcium Carbonate Precipitation on Surface or in the Bulk of Soil. Geomicrobiology Journal, 29(6), 544–549. doi:10.1080/01490451.2011.592929.
  • ASTM D2166-06. (2010). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, Pennsylvania, United States doi:10.1520/D2166-06
  • Choi, S.-G., Park, S.-S., Wu, S., & Chu, J. (2017). Methods for Calcium Carbonate Content Measurement of Biocemented Soils. Journal of Materials in Civil Engineering, 29(11). doi:10.1061/(asce)mt.1943-5533.0002064.
  • Zeitouny, J., Lieske, W., Alimardani Lavasan, A., Heinz, E., Wichern, M., & Wichtmann, T. (2023). Impact of New Combined Treatment Method on the Mechanical Properties and Microstructure of MICP-Improved Sand. Geotechnics, 3(3), 661–685. doi:10.3390/geotechnics3030036.
  • Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors Affecting Efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 992–1001. doi:10.1061/(asce)gt.1943-5606.0000666.
  • Sharma, M., Satyam, N., & Reddy, K. R. (2021). Effect of freeze-thaw cycles on engineering properties of biocemented sand under different treatment conditions. Engineering Geology, 284, 106022. doi:10.1016/j.enggeo.2021.106022.
  • Cui, M. J., Zheng, J. J., Zhang, R. J., Lai, H. J., & Zhang, J. (2017). Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotechnica, 12(5), 971–986. doi:10.1007/s11440-017-0574-9.
  • Sharma, M., & Satyam, N. (2021). Strength and durability of biocemented sands: Wetting-drying cycles, ageing effects, and liquefaction resistance. Geoderma, 402, 115359. doi:10.1016/j.geoderma.2021.115359.
  • Chang, Z., Long, G., Xie, Y., & Zhou, J. L. (2022). Recycling sewage sludge ash and limestone for sustainable cementitious material production. Journal of Building Engineering, 49, 104035. doi:10.1016/j.jobe.2022.104035.
  • Ahenkorah, I., Rahman, M. M., Karim, M. R., & Beecham, S. (2023). Unconfined compressive strength of MICP and EICP treated sands subjected to cycles of wetting-drying, freezing-thawing and elevated temperature: Experimental and EPR modelling. Journal of Rock Mechanics and Geotechnical Engineering, 15(5), 1226–1247. doi:10.1016/j.jrmge.2022.08.007.
  • Wen, K., Li, Y., Liu, S., Bu, C., & Li, L. (2019). Development of an Improved Immersing Method to Enhance Microbial Induced Calcite Precipitation Treated Sandy Soil through Multiple Treatments in Low Cementation Media Concentration. Geotechnical and Geological Engineering, 37(2), 1015–1027. doi:10.1007/s10706-018-0669-6.
  • Ahenkorah, I., Rahman, M. M., Karim, M. R., & Beecham, S. (2023). Characteristics of MICP and EICP-Treated sands in simple shear conditions: A benchmarking with the critical state of untreated sand. Geotechnique. doi:10.1680/jgeot.22.00329.
  • Mahawish, A., Bouazza, A., & Gates, W. P. (2019). Factors affecting the bio-cementing process of coarse sand. Proceedings of the Institution of Civil Engineers: Ground Improvement, 172(1), 25–36. doi:10.1680/jgrim.17.00039.
  • Zhao, Q., Li, L., Li, C., Li, M., Amini, F., & Zhang, H. (2014). Factors Affecting Improvement of Engineering Properties of MICP-Treated Soil Catalyzed by Bacteria and Urease. Journal of Materials in Civil Engineering, 26(12). doi:10.1061/(asce)mt.1943-5533.0001013.
Volume 1, Issue 4
December 2024
Pages 28-34
  • Receive Date: 16 January 2025
  • Accept Date: 18 January 2025
  • First Publish Date: 18 January 2025
  • Publish Date: 06 March 2025