Numerical Investigation of Suction Parameters for Boundary Layer Control on an Airfoil with Gurney Flap

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, Mazandaran University of Science and Technology, Babol, Iran

2 Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran

3 Mechanical Engineering Department, Tennessee Tech University, Cookeville, United States

4 Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies (AUSMT), Amol, Iran

5 Department of Mechanical Engineering, University of Mazandaran, Babolsar, Iran

Abstract

In the present work, the impact of suction and its related parameters, including dimensionless suction velocity, suction angle, and suction length, on controlling the flow over a NACA 0012 airfoil with a Gurney flap have been numerically investigated. The height of the gurney flap is 2% of the cord. The Reynolds number of the flow is 2.1 × 106, which is entirely turbulent. Turbulent flow has been analyzed using the Reynolds stress model (RSM). The suction on the airfoil is modeled as uniform and normal (vertical suction), and the length of the suction area is 3% of the chord length (CHL) (3cm). The suction jet is designed at two angles of 60 and 90 degrees. The results indicate that with the rise of the suction dimensionless velocity, the drag coefficient (CD) decreases. The maximum ratio of forward to backward dimensionless velocity due to suction is one, occurring at a position 2.5% of the chord length (CHL). This indicates that for optimal performance, the jet suction on the airfoil should be positioned at 2.5% of the CHL. The results of this study contribute to the development of a novel method for boundary layer (BL) control, aiming to optimize drag force on airfoils for improved flow management.

Keywords


  • Ravindran, S. S. (1999). Active control of flow separation over an airfoil (No. NAS 1.15: 209838). National Aeronautics and Space Administration, Washington, United States.
  • Li, Y., Wang, J., & Zhang, P. (2002). Flow, Turbulence and Combustion, 68(1), 27–39. doi:10.1023/a:1015679408150.
  • Huang, L., Huang, P. G., LeBeau, R. P., & Hauser, T. (2004). Numerical study of blowing and suction control mechanism on NACA0012 airfoil. Journal of Aircraft, 41(5), 1005–1013. doi:10.2514/1.2255.
  • You, D., & Moin, P. (2008). Active control of flow separation over an airfoil using synthetic jets. Journal of Fluids and Structures, 24(8), 1349–1357. doi:10.1016/j.jfluidstructs.2008.06.017.
  • Kim, S. H., & Kim, C. (2009). Separation control on NACA23012 using synthetic jet. Aerospace Science and Technology, 13(4–5), 172–182. doi:10.1016/j.ast.2008.11.001.
  • Liu, P. Q., Duan, H. S., Chen, J. Z., & He, Y. W. (2010). Numerical study of suction-blowing flow control technology for an airfoil. Journal of Aircraft, 47(1), 229–239. doi:10.2514/1.45114.
  • Genç, M. S., Kaynak, Ü., & Yapici, H. (2011). Performance of transition model for predicting low Re aerofoil flows without/with single and simultaneous blowing and suction. European Journal of Mechanics, B/Fluids, 30(2), 218–235. doi:10.1016/j.euromechflu.2010.11.001.
  • Abdullah, T., Laith M. Jasim, D., & Amir S. Dawood, D. (2012). Experimental Study of Lift/Drag Ratio Enhancement Using Continuous Normal Suction. AL-Rafdain Engineering Journal (AREJ), 20(1), 76–84. doi:10.33899/rengj.2012.47159.
  • Yagiz, B., Kandil, O., & Pehlivanoglu, Y. V. (2012). Drag minimization using active and passive flow control techniques. Aerospace Science and Technology, 17(1), 21–31. doi:10.1016/j.ast.2011.03.003.
  • Shi, Y., Bai, J., Hua, J., & Yang, T. (2015). Numerical analysis and optimization of boundary layer suction on airfoils. Chinese Journal of Aeronautics, 28(2), 357–367. doi:10.1016/j.cja.2015.02.011.
  • Zhang, W., Zhang, Z., Chen, Z., & Tang, Q. (2017). Main characteristics of suction control of flow separation of an airfoil at low Reynolds numbers. European Journal of Mechanics - B/Fluids, 65, 88–97. doi:10.1016/j.euromechflu.2017.01.010.
  • Zhao, Q., Ma, Y., & Zhao, G. (2017). Parametric analyses on dynamic stall control of rotor airfoil via synthetic jet. Chinese Journal of Aeronautics, 30(6), 1818–1834. doi:10.1016/j.cja.2017.08.011.
  • Ma, D., Li, G., Yang, M., & Wang, S. (2018). Research of the suction flow control on wings at low Reynolds numbers. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 232(8), 1515–1528. doi:10.1177/0954410017694057.
  • Kamari, D., Tadjfar, M., & Madadi, A. (2018). Optimization of SD7003 airfoil performance using TBL and CBL at low Reynolds numbers. Aerospace Science and Technology, 79, 199–211. doi:10.1016/j.ast.2018.05.049.
  • Kamranpay, A., & Mehrabadi, A. (2019). Numerical Analysis of NACA Airfoil 0012 at Different Attack Angles and Obtaining its Aerodynamic Coefficients. Journal of Mechatronics and Automation, 6(3), 8-16.
  • Karasu, I., Açikel, H. H., Koca, K., & Genç, M. S. (2020). Effects of thickness and camber ratio on flow characteristics over airfoils. Journal of Thermal Engineering, 6(3), 242–252. doi:10.18186/THERMAL.710967.
  • Fatahian, E., Lohrasbi Nichkoohi, A., Salarian, H., & Khaleghinia, J. (2020). Effects of the hinge position and suction on flow separation and aerodynamic performance of the NACA 0012 airfoil. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(2), 86. doi:10.1007/s40430-020-2170-4.
  • Akbari, P. (2021). Study of NACA 6212 Airfoil and Investigation of its Aerodynamic Properties in Different Angles of Attack. International Journal of Mechanical Dynamics & Analysis, 7(1), 1–8.
  • Fatahian, E., & Fatahian, H. (2021). Simultaneous Effect of Suction and Cavity for Controlling Flow Separation on NACA 0012 Airfoil – CFD Approach. Gazi University Journal of Science, 34(1), 235–249. doi:10.35378/gujs.706052.
  • Kumar, K., Kumar, P., & Singh, S. K. (2021). Passive Control of Boundary Layer Separation Using Single Andmultiple Slats on the Airfoil. International Journal of Fluid Mechanics Research, 48(2), 17–28. doi:10.1615/InterJFluidMechRes.2021033106.
  • Zhu, Z., Xiao, T., Zhi, H., Deng, S., & Lu, Y. (2022). Aerodynamic characteristics of co-flow jet wing with simple high-lift devices. Chinese Journal of Aeronautics, 35(10), 67–83. https://doi.org/10.1016/j.cja.2022.03.008.
  • Açıkel, H. H., Tosun, M., Genç, M. S., & Koca, K. (2022). Numerical investigation on NACA0012 airfoil with tubercular structure. EPJ Web of Conferences, 269, 01001. doi:10.1051/epjconf/202226901001.
  • Mishra, A., & De, A. (2023). Investigation of Flow Over Naca0021 Airfoil With Leading-Edge Tubercles Using Transition-Based Hybrid Rans/Les Model. Journal of Flow Visualization and Image Processing, 30(1), 1–36. doi:10.1615/JFlowVisImageProc.2022040289.
  • Ma, C. Y., Xu, H. Y., & Qiao, C. L. (2023). Comparative study of two combined blowing and suction flow control methods on pitching airfoils. Physics of Fluids, 35(3). doi:10.1063/5.0138962.
  • Rayhan, A. M., Hossain, M. S., Mim, R. H., & Ali, M. (2024). Computational and experimental study on the aerodynamic performance of NACA 4412 airfoil with slot and groove. Heliyon, 10(11). doi:10.1016/j.heliyon.2024.e31595.
  • Butt, F., Talha, T., Khan, R., Mazhar, A. R., Butt, M., Petru, J., & Seikh, A. H. (2024). Effect of the shape of flapping airfoils on aerodynamic forces. Heliyon, 10(8). doi:10.1016/j.heliyon.2024.e29561.
  • Abdalkarem, A. A. M., Ansaf, R., Muzammil, W. K., Ibrahim, A., Harun, Z., & Fazlizan, A. (2023). Preliminary assessment of the NACA0021 trailing edge wedge for wind turbine application. Heliyon, 9(11). doi:10.1016/j.heliyon.2023.e21193.
  • Khalili, Z., Bararpour, A., Hosseinzadeh, K., Jafari, B., & Domiri Ganji, D. (2024). New Approach of Non-Linear Fractional Differential Equations Analytical Solution by Akbari-Ganji’s Method. Contributions of Science and Technology for Engineering, 1(1), 13–19.
  • Krishnaswamy, S., Jain, S., & Sitaram, N. (2014). Grid and Turbulence Model-based Exhaustive Analysis of NACA 0012 Airfoil. Journal of Advanced Research in Applied Mechanics & Computational Fluid Dynamics, 1(1), 24–33.
Volume 1, Issue 4
December 2024
Pages 58-72
  • Receive Date: 21 December 2024
  • Revise Date: 07 January 2025
  • Accept Date: 12 January 2025
  • First Publish Date: 12 January 2025
  • Publish Date: 07 March 2025