Numerical simulation of seismic-induced sloshing in rectangular water tanks considering three different approaches.

Document Type : Original Article

Authors

1 Civil Engineering Department, Engineering Faculty, Mohaghegh Ardabili University, Ardabil, Iran

2 Civil Engineering Department, Engineering Faculty, University of Mohaghegh Ardabili, Ardabil, Iran.

3 School of Mechanical, Aerospace and Civil Engineering The University of Sheffield

Abstract

This study, investigates the factors impacting on sloshing phenomenon of the tank structures including geometry, burial rate, and installation of T-shaped baffles under two different earthquake records. The results indicate that the tanks with larger dimensions will experience less sloshing height. Moreover, length, height, and the freeboard, respectively, are effective in lowering the roof force. However, freeboard plays a more important role comparing with the burial rate of the tank in reducing the roof force. Note that as the freeboard and burial rate increase, the roof force decreases. The results represent that decreasing the height to length ratio of the tank reduces the maximum sloshing height. Finally, using the energy dissipation ratio concept, it is observed that the tank with baffles shows much better performance with the energy dissipation ratio of about 96%, comparing with the burial approach in which even the tank under 100% burial rate just dissipates less than 50% the energy induced by the sloshing waves.

Keywords


  • Li, Y. C., & Gou, H. L. (2018). Modeling Problem of Equivalent Mechanical Models of a Sloshing Fluid. Shock and Vibration, 2018. doi:10.1155/2018/2350716.
  • Altunisik, A. C., & Sesli, H. (2015). Dynamic response of concrete gravity dams using different water modelling approaches: Westergaard, lagrange and euler. Computers and Concrete, 16(3), 429–448. doi:10.12989/cac.2015.16.3.429.
  • Moslemi, M., Farzin, A., & Kianoush, M. R. (2019). Nonlinear sloshing response of liquid-filled rectangular concrete tanks under seismic excitation. Engineering Structures, 188, 564–577. doi:10.1016/j.engstruct.2019.03.037.
  • Mas’ud Alfanda, A. (2017). Comparative Analysis of Circular and Rectangular Reinforced Concrete Tanks Based on Economical Design Perspective. American Journal of Applied Scientific Research, 3(2), 14. doi:10.11648/j.ajasr.20170302.12.
  • Kim, J. K., Koh, H. M., & Kwahk, I. J. (1996). Dynamic Response of Rectangular Flexible Fluid Containers. Journal of Engineering Mechanics, 122(9), 807–817. doi:10.1061/(asce)0733-9399(1996)122:9(807).
  • Chern, M. J., Vaziri, N., Syamsuri, S., & Borthwick, A. G. L. (2012). Pseudospectral solution of three-dimensional nonlinear sloshing in a shallow water rectangular tank. Journal of Fluids and Structures, 35, 160–184. doi:10.1016/j.jfluidstructs.2012.08.003.
  • Camnasio, E., Orsi, E., & Schleiss, A. J. (2011). Experimental study of velocity fields in rectangular shallow reservoirs. Journal of Hydraulic Research, 49(3), 352–358. doi:10.1080/00221686.2011.574387.
  • Ghateh, R., Kianoush, M. R., & Pogorzelski, W. (2015). Seismic response factors of reinforced concrete pedestal in elevated water tanks. Engineering Structures, 87, 32–46. doi:10.1016/j.engstruct.2015.01.017.
  • Hadj-Djelloul, N., & Djermane, M. (2020). Effect of geometric imperfection on the dynamic of elevated water tanks. Civil Engineering Journal (Iran), 6(1), 85–97. doi:10.28991/cej-2020-03091455.
  • Wang, Q., Tiwari, N. D., Qiao, H., & Wang, Q. (2020). Inerter-based tuned liquid column damper for seismic vibration control of a single-degree-of-freedom structure. International Journal of Mechanical Sciences, 184, 105840. doi:10.1016/j.ijmecsci.2020.105840.
  • Dou, P., Xue, M. A., Zheng, J., Zhang, C., & Qian, L. (2020). Numerical and experimental study of tuned liquid damper effects on suppressing nonlinear vibration of elastic supporting structural platform. Nonlinear Dynamics, 99(4), 2675–2691. doi:10.1007/s11071-019-05447-y.
  • Jin, X., Tang, J., Tang, X., Mi, S., Wu, J., Liu, M., & Huang, Z. (2020). Effect of viscosity on sloshing in a rectangular tank with intermediate liquid depth. Experimental Thermal and Fluid Science, 118, 110148. doi:10.1016/j.expthermflusci.2020.110148.
  • Shekari, M. R. (2020). On the numerical assessment of the resonant sloshing responses in 3D multi baffled partially liquid-filled steel cylindrical tanks shaken by long-period ground motions. Soil Dynamics and Earthquake Engineering, 129, 105712. doi:10.1016/j.soildyn.2019.105712.
  • Yu, L., Xue, M. A., & Jiang, Z. (2020). Experimental investigation of parametric sloshing in a tank with vertical baffles. Ocean Engineering, 213, 107783. doi:10.1016/j.oceaneng.2020.107783.
  • Ünal, U. O., Bilici, G., & Akyıldız, H. (2019). Liquid sloshing in a two-dimensional rectangular tank: A numerical investigation with a T-shaped baffle. Ocean Engineering, 187, 106183. doi:10.1016/j.oceaneng.2019.106183.
  • Aghajanzadeh, S. M., Mirzabozorg, H., & Yazdani, H. (2023). SPH Technique to Study the Sloshing in Concrete Liquid Tanks. Numerical Methods in Civil Engineering, 8(1), 1–17. doi:10.61186/nmce.2304.1015.
  • Wang, G., Lu, W., Zhang, S. (2021). Seismic Potential Failure Mode Analysis of Concrete Gravity Dam–Water–Foundation Systems Through Incremental Dynamic Analysis. In: Seismic Performance Analysis of Concrete Gravity Dams. Advanced Topics in Science and Technology in China,. Springer, Singapore. doi:10.1007/978-981-15-6194-8_4.
  • Kianoush, M. R., & Ghaemmaghami, A. R. (2011). The effect of earthquake frequency content on the seismic behavior of concrete rectangular liquid tanks using the finite element method incorporating soil-structure interaction. Engineering Structures, 33(7), 2186–2200. doi:10.1016/j.engstruct.2011.03.009.
  • Jia, J. (2016). Modern earthquake engineering: Offshore and land-based structures. Springer, Cham, Switzerland.
  • ACI 350.3-01. (2001). Seismic Design of Liquid-Containing Concrete Structures, Reported by ACI Committee 350, Environmental Engineering Concrete Structures. American Concrete Institute (ACI), Michigan, United States.
  • Vesenjak, M., Mullerschon, H., Hummel, A., & Ren, Z. (2004). Simulation of fuel sloshing-comparative study. LS-DYNA Anwenderforum, 1-8.
  • Ghaemmaghami, A. (2010). Dynamic time-history response of concrete rectangular liquid storage tanks. PhD Thesis, Sharif University, Tehran, Iran.
  • Livaoglu, R., Cakir, T., Dogangun, A., & Aytekin, M. (2011). Effects of backfill on seismic behavior of rectangular tanks. Ocean Engineering, 38(10), 1161–1173. doi:10.1016/j.oceaneng.2011.05.017.
  • Elnashai, A. S., & Di Sarno, L. (2008). Fundamentals of Earthquake Engineering. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470024867
  • Xue, M.-A., Zheng, J., & Lin, P. (2012). Numerical Simulation of Sloshing Phenomena in Cubic Tank with Multiple Baffles. Journal of Applied Mathematics, 2012(1). doi:10.1155/2012/245702.
Volume 1, Issue 4
December 2024
Pages 16-27
  • Receive Date: 18 December 2024
  • Revise Date: 27 December 2024
  • Accept Date: 30 December 2024
  • First Publish Date: 30 December 2024
  • Publish Date: 05 March 2025