Investigation of the Effect of Thermal Shields on the Calcination of Petroleum Coke in Rotary Disc Kilns

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, Tafresh University, Tafresh 39518-79611, Iran

2 Mechanical and Aerospace Systems Research Group, University of Nottingham, Nottingham NG7 2TU, UK

3 School of Engineering, Macquarie University

Abstract

Due to various impurities, impure petroleum coke obtained during extraction processes is not suitable for optimal use. The calcination process, commonly called coke baking, has gained considerable attention for its ability to purify coke and remove waste materials. Various devices and methods are available for coke calcination, among which the rotary disc kiln has been investigated in this study.
This research aims to propose a simple numerical model for simulating heat transfer processes within a rotary disc kiln. It was observed that during the layer-by-layer baking of coke, the intense heat flux of the gaseous phase inside the kiln leads to a rapid temperature rise in the first and second coke layers. To address this, a novel thermal shield was introduced in this study to reduce the heat flux reaching the coke bed in the initial layers.
Results demonstrated that applying a thermal shield reduced the coke bed temperature in the first and second layers by up to 8% and 52%, respectively, while maintaining the overall calcination process. Increasing the shield’s thickness by 20% further decreased the temperatures by 7% and 17% in these layers. The model also achieved an accuracy of less than 2% error compared to reference data, confirming its reliability. Additionally, the use of the shield reduced the refractory lining temperature by up to 7.74%, contributing to improved kiln durability and energy efficiency.

Keywords


  • Sharikov, Y. V., Sharikov, F. Y., & Krylov, K. A. (2021). Mathematical Model of Optimum Control for Petroleum Coke Production in a Rotary Tube Kiln. Theoretical Foundations of Chemical Engineering, 55(4), 711–719. doi:10.1134/S0040579521030192.
  • Edwards, L. (2015). The History and Future Challenges of Calcined Petroleum Coke Production and Use in Aluminum Smelting. Jom, 67(2), 308–321. doi:10.1007/s11837-014-1248-9.
  • Kocaefe, D., Charette, A., & Castonguay, L. (1995). Green coke pyrolysis: investigation of simultaneous changes in gas and solid phases. Fuel, 74(6), 791–799. doi:10.1016/0016-2361(95)00022-W.
  • Belitskus, D. (2013). Standardization of a Calcined Coke Bulk Density Test. Essential Readings in Light Metals, Springer, Cham. doi:10.1007/978-3-319-48200-2_36.
  • Pearce, K. W. (1973). HEAT-TRANSFER MODEL FOR ROTARY KILNS. Journal of the Institute of Fuel, 46(389), 363-371.
  • Arabi, S. M., Aminy, M., Ghadamian, H., Ozgoli, H. A., & Ahmadi, B. (2017). Thermo-Economic Analysis of Applying Cooling System Using Fog on GE-F5 Gas Turbines (Case Study). Journal of Heat and Mass Transfer Research, 4(2), 73–81. doi:10.22075/JHMTR.2017.1613.1106.
  • Bui, R. T., Simard, G., Charette, A., Kocaefe, Y., & Perron, J. (1995). Mathematical modeling of the rotary coke calcining kiln. The Canadian Journal of Chemical Engineering, 73(4), 534–545. Portico. doi:1002/cjce.5450730414.
  • Khalili, Z., Bararpour, A., Hosseinzadeh, K., Jafari, B., & Domiri Ganji, D. (2024). New approach of non-linear fractional differential equations analytical solution by Akbari-Ganji’s Method. Contributions of Science and Technology for Engineering, 1(1), 12–18. doi:10.22080/CSTE.2024.5009.
  • Martins, M. A., Oliveira, L. S., & Franca, A. S. (2001). Modeling and simulation of petroleum coke calcination in rotary kilns. Fuel, 80(11), 1611–1622. doi:10.1016/S0016-2361(01)00032-1.
  • Elkanzi, E. M. (2007). Simulation of the Coke Calcining Processes in Rotary Kilns. Chemical Product and Process Modeling, 2(3). doi:10.2202/1934-2659.1100.
  • Elkanzi, E.M., Marhoon, F.S., & Jasim, M.J. (2014). Kinetic Analysis of the Coke Calcination Processes in Rotary Kilns. Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing,. Springer, Cham, Switzerland. doi:10.1007/978-3-319-03581-9_3.
  • Mehdipour, R., Zeinali, B., Fathiraboki, R., Ozgoli, H. A., Baniamerian, Z., & Sadr, S. (2024). Investigating the performance of a seasonal cold storage system for dry and mountainous climates. Contributions of Science and Technology for Engineering, 1(3), 51–59. doi:10.22080/CSTE.2024.27808.1003.
  • Ghadamian, H., Esmailie, F., & Ozgoli, H. A. (2016). Energy consumption minimization of an industrial furnace by optimization of recuperative heat exchange. Journal of Mechanics, 32(6), 767–775. doi:10.1017/jmech.2016.85.
  • Ghadamian, H., Ozgoli, H. A., & Esmailie, F. (2015). Optimal Design for Compact Heat Exchanger (Che) by Heat Transfer Viewpoint as an Air Pre-Heater. Journal of Mechanics, 31(5), 583–590. doi:10.1017/jmech.2015.11.
  • Modest, M. F. (2013). Inverse Radiative Heat Transfer. Radiative Heat Transfer, 779–802. Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-386944-9.50023-6.
  • Meisingset, H. C., & Balchen, J. G. (1995). Mathematical modeling of a rotary hearth coke calciner. Modeling, Identification and Control,16(4), 193–212. doi:10.4173/mic.1995.4.2.
  • Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2007). Fundamentals of heat and mass transfer (6th). John Wiley & Sons, Hoboken, United States.
  • Carslaw, H.S. and Jaeger, J.C. (1959) Conduction of Heat in Solids. Clarendon Press, Oxford, United Kingdom.
  • Gilchrist, J. D. (1977). Properties and Tests. In Fuels, Furnaces and Refractories (pp. 6–16). Pergamon Press, Oxford, United Kingdom. doi:10.1016/b978-0-08-020430-7.50007-4.
  • Jones, S. S. (1986). Anode-Carbon Usage in the Aluminum Industry. Petroleum-Derived Carbons, Amer Chemical Society (ASC), Washington, United States. doi:10.1021/bk-1986-0303.ch017.
  • Kolbeinsen, L., Lindstad, T., Tveit, H., Bruno, M., & Nygaard, L. (1995). Energy recovery in the Norwegian ferro alloy industry. In Tuset, J., Tveit, H., & Page, I. (Eds.), INFACON 7, Trondheim, Norway, June 1995 (pp. 165-178). FFF.
  • Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2006). Transport phenomena (2nd). John Wiley & Sons, Hoboken, United States.
Volume 1, Issue 4
December 2024
Pages 1-15
  • Receive Date: 24 November 2024
  • Revise Date: 22 December 2024
  • Accept Date: 24 December 2024
  • First Publish Date: 24 December 2024
  • Publish Date: 05 March 2025