SARIMA-Based Prediction of Chalous River Flow Rates

Document Type : Original Article

Authors

1 PhD of Civil and Environmental Engineering KN Toosi University of Technology

2 Associate Professor of Department of Civil Engineering, K.N. Toosi University of Technology

3 PhD Candidate of Environmental Engineering, Department of Civil and Environmental Engineering University of Auckland, Auckland, New Zealand

Abstract

The monthly flow rates of the Chalus River in Mazandaran Province, Iran are predicted using the Seasonal Autoregressive Integrated Moving Average (SARIMA) model in this research. The SARIMA model was created and verified with MiniTab software by analyzing historical data spanning from 2006 to 2023. The modeling process involved checking data stationarity with the Augmented Dickey-Fuller (ADF) test, normalizing data using the Johnson Transformation, and determining the best SARIMA parameters by analyzing Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots. The SARIMA model with parameters (2,0,0)(0,1,1)12 was determined to be the most precise in predicting future outcomes, exhibiting a strong R² value and reliable forecasting capabilities. Despite effectively modeling the seasonal changes of the Chalus River, the model proved to be inadequate in predicting extreme flow rates. The findings indicate that utilizing the SARIMA model proves to be a dependable instrument for overseeing water resources in the area, with potential for further investigation into integrating SARIMA with alternative approaches to improve forecasting of exceptional occurrences.

Keywords


  • Mamudu, L., Yahaya, A., & Dan, S. (2021). Application of seasonal autoregressive integrated moving average (SARIMA) for flows of river kaduna. Nigerian Journal of Engineering, 28(2).
  • Tadesse, K. B., & Dinka, M. O. (2017). Application of SARIMA model to forecasting monthly flows in Waterval River, South Africa. Journal of Water and Land Development, 35(1), 229–236. doi:10.1515/jwld-2017-0088.
  • Rahmani Firozjaei, M., Salehi Neyshabouri, S. A. A., Amini Sola, S., & Mohajeri, S. H. (2018). Numerical Simulation on the Performance Improvement of a Lateral Intake Using Submerged Vanes. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 43(2), 167–177. doi:10.1007/s40996-018-0126-z.
  • Rahmani Firozjaei, M., Behnamtalab, E., & Salehi Neyshabouri, S. A. A. (2019). Numerical simulation of the lateral pipe intake: flow and sediment field. Water and Environment Journal, 34(2), 291–304. doi:10.1111/wej.12462
  • Dadkhah Tehrani, M., Karimi Darmian, S., Moridi, A., & Khalili, R. (2023). Evaluation of water quality of Chalus River based on IRWQIsc and NSFWQI water quality index. Journal of Environmental Science Studies, 8(3), 7064-7072.
  • Phan, T.-T.-H., & Nguyen, X. H. (2020). Combining statistical machine learning models with ARIMA for water level forecasting: The case of the Red river. Advances in Water Resources, 142, 103656. doi:10.1016/j.advwatres.2020.103656.
  • Wang, W. chuan, Chau, K. wing, Xu, D. mei, & Chen, X. Y. (2015). Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition. Water Resources Management, 29(8), 2655–2675. doi:10.1007/s11269-015-0962-6.
  • Azad, A. S., Sokkalingam, R., Daud, H., Adhikary, S. K., Khurshid, H., Mazlan, S. N. A., & Rabbani, M. B. A. (2022). Water Level Prediction through Hybrid SARIMA and ANN Models Based on Time Series Analysis: Red Hills Reservoir Case Study. Sustainability, 14(3), 1843. https://doi.org/10.3390/su14031843.
  • Mombeni, H. A., Rezaei, S., Nadarajah, S., & Emami, M. (2013). Estimation of Water Demand in Iran Based on SARIMA Models. Environmental Modeling & Assessment, 18(5), 559–565. doi:10.1007/s10666-013-9364-4.
  • Sheikholeslami, Z., Ehteshami, M., & Nazif, S. (2024). Development of a System Dynamics Model for Prediction of Karaj Reservoir Share in Tehran Water Supply. Numerical Methods in Civil Engineering, 8(2), 22–35. doi:10.61186/nmce.2303.1029.
  • Gharde, K. D., Kothari, M., & Mahale, D. M. (2016). Developed Seasonal ARIMA Model to Forecast Streamflow for Savitri Basin in Konkan Region of Maharshtra on Daily Basis. J. Indian Soc. Coastal Agric. Res, 34(1), 110–119.
  • Katimon, A., Shahid, S., & Mohsenipour, M. (2018). Modeling water quality and hydrological variables using ARIMA: a case study of Johor River, Malaysia. Sustainable Water Resources Management, 4(4), 991–998. doi:10.1007/s40899-017-0202-8.
  • Kassem, A. A., Raheem, A. M., & Khidir, K. M. (2020). Daily Streamflow Prediction for Khazir River Basin Using ARIMA and ANN Models. Zanco Journal of Pure and Applied Sciences, 32(3). doi:10.21271/zjpas.32.3.4.
  • Adams, S. O., Bamanga, M., & Ardo Bamanga, M. (2020). Modelling and Forecasting Seasonal Behavior of Rainfall in Abuja, Nigeria; A SARIMA Approach. American Journal of Mathematics and Statistics, 2020(1), 10–19. doi:10.5923/j.ajms.20201001.02.
  • Tao, H., Sun, Q., Wu, R., Zeng, X., & Liu, X. (2024). Predictive Analysis of Yellow River Water and Sand Monitoring Data Based on the ARIMA Model. Proceedings - 2024 International Conference on Electrical Drives, Power Electronics and Engineering, EDPEE 2024, 82, 575–579. doi:10.1109/EDPEE61724.2024.00113.
  • Ning, Y. Z., & Musa, S. (2023). Stream Flow Forcasting on Pahang River by Time Series Models, ARMA, ARIMA and SARIMA. Recent Trends in Civil Engineering and Built Environment, 4(1), 331–341. http://publisher.uthm.edu.my/periodicals/index.php/rtcebe
  • Mazandaran Regional Water (2024). Report on the status of water resources in Mazandaran province, Mazandaran Regional Water Company, Sari, Iran.
  • K, Dimri, T., Ahmad, S., & Sharif, M. (2020). Time series analysis of climate variables using seasonal ARIMA approach. Journal of Earth System Science, 129(1). doi:10.1007/s12040-020-01408-x.
  • Sirisha, U. M., Belavagi, M. C., & Attigeri, G. (2022). Profit Prediction Using ARIMA, SARIMA and LSTM Models in Time Series Forecasting: A Comparison. IEEE Access, 10, 124715–124727. doi:10.1109/ACCESS.2022.3224938.
  • Obateru, R. O., Adeyefa, A. O., & Fashae, O. A. (2023). Drought assessment and rainfall trend analysis in southwestern Nigeria. World Water Policy, 9(2), 254–273. doi:10.1002/wwp2.12102.
  • Jin, J., Wang, G., Zhang, J., Yang, Q., Liu, C., Liu, Y., Bao, Z., & He, R. (2020). Impacts of climate change on hydrology in the Yellow River Source Region, China. Journal of Water and Climate Change, 11(3), 916–930. doi:10.2166/wcc.2018.085.
  • Muia, V. K., Opere, A. O., Ndunda, E., & Amwata, D. A. (2024). Rainfall and Temperature Trend Analysis using Mann-Kendall and Sen’s Slope Estimator Test in Makueni County, Kenya. J. Mater. Environ. Sci., 15 (3), 349, 367.
  • Kabbilawsh, P., Kumar, D. S., & Chithra, N. R. (2023). Assessment of temporal homogeneity of long-term rainfall time-series datasets by applying classical homogeneity tests. Environment, Development and Sustainability, 26(7), 16757–16801. doi:10.1007/s10668-023-03310-0.
Volume 1, Issue 3
September 2024
Pages 1-9
  • Receive Date: 01 August 2024
  • Revise Date: 20 August 2024
  • Accept Date: 25 August 2024
  • First Publish Date: 01 September 2024
  • Publish Date: 01 September 2024