The Effect of Field Intensity on Magnetic Nanoparticles in The Conical Neck of Abdominal Aortic Vessel: Numerical Simulation

Document Type : Original Article

Authors

1 Babol Noshirvani University of Technology, Babol, Iran.

2 Mechanical Engineering Department, Tennessee Tech University, Cookeville, United States

3 Babol Noshirvani University of Technology, Babol, Iran

Abstract

In the current era of the availability of computational fluid dynamics tools and high-performance computers, it is possible to simulate complex physical phenomena within the human body. One of the most studied areas of this field is drug delivery. Drug path control is one of the processes that can greatly help many diseases. Using the new drug delivery system, also called “controlled release drug delivery system”, three domains of speed, time, and place of drug release can be controlled, resulting in minimizing unwanted side effects on other vital tissues, which leads to lower drug doses. This study aims to investigate the transfer of Fe3O4 nanoparticles in the presence of a magnetic field in a three-dimensional model of the Angulated Neck of Abdominal Aortic Aneurysm (AAA) extracted from the literature. The ideal aortic model includes the proximal angular neck, the aneurysm sac, and the iliac arteries. Uniform nanoparticles in a specific position relative to the angled neck of the aorta are modeled with the k - ⍵ turbulence model. The Euler- Lagrangian (E-L) approach and the magnetic hydrodynamic model (MHD) in the ANSYS solution are targeted to investigate TD nanoparticles. These nanoparticles are tracked at two different magnetic field positions located near the abdominal aorta and examined by applying different magnetic numbers

Keywords


  • Khonsary, S. (2017). Guyton and Hall: Textbook of Medical Physiology. Surgical Neurology International, 8(1), 275. doi:10.4103/sni.sni_327_17.
  • Hong, L. S., Mohd Adib, M. A. H., Abdullah, M. S., & Hassan, R. (2020). Qualitative and quantitative comparison of hemodynamics between MRI measurement and CFD simulation on patient-specific cerebral aneurysm-A review. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 68(2), 112–123. doi:10.37934/ARFMTS.68.2.112123.
  • Tomaszewski, M., Sybilski, K., Baranowski, P., & Małachowski, J. (2020). Experimental and numerical flow analysis through arteries with stent using particle image velocimetry and computational fluid dynamics method. Biocybernetics and Biomedical Engineering, 40(2), 740–751. doi:10.1016/j.bbe.2020.02.010.
  • Nowak, M. (2017). Identification and modelling of the pulsatile blood flow in section of elastic large blood vessel. Archiwum Instytutu Techniki Cieplnej, 3.
  • Sarker, S., Chatzizisis, Y. S., & Terry, B. S. (2020). Computational optimization of a novel atraumatic catheter for local drug delivery in coronary atherosclerotic plaques. Medical Engineering and Physics, 79, 26–32. doi:10.1016/j.medengphy.2020.03.003.
  • Zhang, X., Luo, M., Tan, P., Zheng, L., & Shu, C. (2020). Magnetic nanoparticle drug targeting to patient-specific atherosclerosis: effects of magnetic field intensity and configuration. Applied Mathematics and Mechanics (English Edition), 41(2), 349–360. doi:10.1007/s10483-020-2566-9.
  • Sarker, S., Chatzizisis, Y. S., Kidambi, S., & Terry, B. S. (2018). Design and Development of a Novel Drug Delivery Catheter for Atherosclerosis. 2018 Design of Medical Devices Conference. doi:10.1115/dmd2018-6869.
  • Li, J.-L., Liu, L.-N., & Gao, Y.-H. (2019). Research on Driving System of Hydraulic Robot Based on Ferrofluid. IOP Conference Series: Materials Science and Engineering, 688(3), 033077. doi:10.1088/1757-899x/688/3/033077.
  • Shazri, S., & Idres, M. (2017). Numerical Investigation of Magnetic Nanoparticles Trajectories for Magnetic Drug Targeting. IOP Conference Series: Materials Science and Engineering, 184, 012061. doi:10.1088/1757-899x/184/1/012061.
  • Jalali, S., Jalali, S., & Barati, E. (2024). Pulsatile blood flow simulations of magnetic drug targeting (MDT) for drug particles dispersion through stenosis asymmetric and symmetric vessels. Journal of Magnetism and Magnetic Materials, 590, 171649. doi:10.1016/j.jmmm.2023.171649.
  • Park, M., Le, T. A., Hadadian, Y., & Yoon, J. (2022). Effects of major guidance parameters on aggregated magnetic particles during magnetic drug targeting. Journal of Magnetism and Magnetic Materials, 564, 170110. doi:10.1016/j.jmmm.2022.170110.
  • Yew, Y. P., Shameli, K., Miyake, M., Ahmad Khairudin, N. B. B., Mohamad, S. E. B., Naiki, T., & Lee, K. X. (2020). Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arabian Journal of Chemistry, 13(1), 2287–2308. doi:10.1016/j.arabjc.2018.04.013.
  • Kim, D. H., Kim, D. W., Jang, J. Y., Lee, N., Ko, Y. J., Lee, S. M., Kim, H. J., Na, K., & Son, S. U. (2020). Fe3O4@Void@Microporous Organic Polymer-Based Multifunctional Drug Delivery Systems: Targeting, Imaging, and Magneto-Thermal Behaviors. ACS Applied Materials and Interfaces, 12(33), 37628–37636. doi:10.1021/acsami.0c12237.
  • Hoshiar, A. K., Le, T. A., Amin, F. U., Kim, M. O., & Yoon, J. (2017). Studies of aggregated nanoparticles steering during magnetic-guided drug delivery in the blood vessels. Journal of Magnetism and Magnetic Materials, 427, 181–187. doi:10.1016/j.jmmm.2016.11.016.
  • Lim, B. K., Tighe, E. C., & Kong, S. D. (2019). The use of magnetic targeting for drug delivery into cardiac myocytes. Journal of Magnetism and Magnetic Materials, 473, 21–25. doi:10.1016/j.jmmm.2018.09.118.
  • Salem, S. F., & Tuchin, V. V. (2020). Numerical Simulation of Blood Flow in a Vessel by Using COMSOL Multiphysics® Software. Annual Research & Review in Biology, 35(9), 76–82. doi:10.9734/arrb/2020/v35i930274.
  • Jafarzadeh, S., Nasiri Sadr, A., Kaffash, E., Goudarzi, S., Golab, E., & Karimipour, A. (2020). The Effect of Hematocrit and Nanoparticles Diameter on Hemodynamic Parameters and Drug Delivery in Abdominal Aortic Aneurysm with Consideration of Blood Pulsatile Flow. Computer Methods and Programs in Biomedicine, 195, 105545. doi:10.1016/j.cmpb.2020.105545.
  • Sodagar, H., Shakiba, A., & Niazmand, H. (2020). Numerical investigation of drug delivery by using magnetic field in a 90-degree bent vessel: a 3D simulation. Biomechanics and Modeling in Mechanobiology, 19(6), 2255–2269. doi:10.1007/s10237-020-01337-0.
  • Hobo, R., Kievit, J., Leurs, L. J., & Buth, J. (2007). Influence of severe infrarenal aortic neck angulation on complications at the proximal neck following endovascular AAA repair: A EUROSTAR study. Journal of Endovascular Therapy, 14(1), 1–11. doi:10.1583/06-1914.1.
  • Akar, S., Abolfazli Esfahani, J., & Mousavi Shaegh, S. A. (2020). A numerical investigation on the Magnetophoretic-guided stem cells delivery in a bend blood vessel. Journal of Magnetism and Magnetic Materials, 498, 166110. doi:10.1016/j.jmmm.2019.166110.
  • Algabri, Y. A., Chatpun, S., & Taib, I. (2019). An investigation of pulsatile blood flow in an angulated neck of abdominal aortic aneurysm using computational fluid dynamics. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 57(2), 265–274.
  • Pourmehran, O., Gorji, T. B., & Gorji-Bandpy, M. (2016). Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics. Biomechanics and Modeling in Mechanobiology, 15(5), 1355–1374. doi:10.1007/s10237-016-0768-3.
  • Gori, F., & Boghi, A. (2011). Two new differential equations of turbulent dissipation rate and apparent viscosity for non-newtonian fluids. International Communications in Heat and Mass Transfer, 38(6), 696–703. doi:10.1016/j.icheatmasstransfer.2011.03.003.
  • Pourmehran, O., Rahimi-Gorji, M., Gorji-Bandpy, M., & Gorji, T. B. (2015). Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking. Journal of Magnetism and Magnetic Materials, 393, 380–393. doi:10.1016/j.jmmm.2015.05.086.
  • Ghosh, A., Islam, M. S., & Saha, S. C. (2020). Targeted drug delivery of magnetic nano-particle in the specific lung region. Computation, 8(1), 10. doi:10.3390/computation8010010.
  • Bates, A. J., Schuh, A., Amine-Eddine, G., McConnell, K., Loew, W., Fleck, R. J., Woods, J. C., Dumoulin, C. L., & Amin, R. S. (2019). Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging. Clinical Biomechanics, 66, 88–96. doi:10.1016/j.clinbiomech.2017.10.011.
  • Longest, P. W., & Xi, J. (2007). Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. Journal of Aerosol Science, 38(1), 111–130. doi:10.1016/j.jaerosci.2006.09.007.
  • Bose, S., & Banerjee, M. (2015). Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling. Journal of Magnetism and Magnetic Materials, 385, 32–46. doi:10.1016/j.jmmm.2015.02.060.
Volume 1, Issue 2
June 2024
Pages 19-28
  • Receive Date: 08 April 2024
  • Revise Date: 30 April 2024
  • Accept Date: 14 May 2024
  • First Publish Date: 01 June 2024
  • Publish Date: 01 June 2024