Sea surface temperature fronts, narrow strips on the ocean's surface with significant temperature changes, play a crucial role in marine ecosystems and climate regulation. This study compares the Single Images Edge Detection (SIED) and Canny algorithms in detecting sea surface temperature fronts in the Caspian Sea using MODIS satellite images from 2015 to 2019. The SIED algorithm, a population-based method, identified fronts by statistically analyzing temperature histograms within a 32×32-pixel window. In contrast, the Canny algorithm, a gradient-based method, detected fronts by calculating temperature gradients at each pixel. Both algorithms revealed seasonal and spatial variations in temperature fronts, with the highest presence of fronts detected during the winter months. The SIED algorithm found the lowest presence of stable fronts in the northern Caspian in September and April and the southern Caspian in November, March, and April. The Canny algorithm showed the lowest presence in June, March, and August. SIED detected the highest presence of stable fronts in November and December in the northern Caspian Sea and in January in the southern Caspian Sea. The Canny algorithm identified the highest presence during the first three months of the winter monsoon. Both algorithms consistently detected fronts along the eastern coasts of the Middle and South Caspian, with significant fronts near the Garabogazköl Basin and Turkmenbashi Gulf. Despite differences in detection, both methods revealed similar general patterns of temperature fronts
Belkin, I. M., Shan, Z., & Cornillon, P. (1998). Global survey of oceanic fronts from Pathfinder SST and in-situ data. Eos Trans. AGU, 79(45).
Zhao, L., Yang, D., Zhong, R., & Yin, X. (2022). Interannual, Seasonal, and Monthly Variability of Sea Surface Temperature Fronts in Offshore China from 1982–2021. Remote Sensing, 14(21), 5336. doi:10.3390/rs14215336.
Ye, Z., & Tozuka, T. (2022). Causal relationship between sea surface temperature and precipitation revealed by information flow. Frontiers in Climate, 4, 1024384. doi:10.3389/fclim.2022.1024384.
Raju, R. M., Nayak, R. K., Mulukutla, S., Mohanty, P. C., Manche, S. S., Seshasai, M. V. R., & Dadhwal, V. K. (2022). Variability of the thermal front and its relationship with Chlorophyll-a in the north Bay of Bengal. Regional Studies in Marine Science, 56, 102700. doi:10.1016/j.rsma.2022.102700.
Timko, P. G., Arbic, B. K., Hyder, P., Richman, J. G., Zamudio, L., O’Dea, E., Wallcraft, A. J., & Shriver, J. F. (2019). Assessment of shelf sea tides and tidal mixing fronts in a global ocean model. Ocean Modelling, 136, 66–84. doi:10.1016/j.ocemod.2019.02.008.
Lan, K. W., Kawamura, H., Lee, M. A., Chang, Y., Chan, J. W., & Liao, C. H. (2009). Summertime sea surface temperature fronts associated with upwelling around the Taiwan Bank. Continental Shelf Research, 29(7), 903–910. doi:10.1016/j.csr.2009.01.015.
Wang, Y., Liu, J., Liu, H., Lin, P., Yuan, Y., & Chai, F. (2021). Seasonal and Interannual Variability in the Sea Surface Temperature Front in the Eastern Pacific Ocean. Journal of Geophysical Research: Oceans, 126(2), 2020 016356. doi:10.1029/2020JC016356.
Xi, J., Wang, Y., Feng, Z., Liu, Y., & Guo, X. (2022). Variability and Intensity of the Sea Surface Temperature Front Associated With the Kuroshio Extension. Frontiers in Marine Science, 9, 9. doi:10.3389/fmars.2022.836469.
Xie, S. P., Hafner, J., Tanimoto, Y., Liu, W. T., Tokinaga, H., & Xu, H. (2002). Bathymetric effect on the winter sea surface temperature and climate of the Yellow and East China Seas. Geophysical Research Letters, 29(24), 81–1–81–4. doi:10.1029/2002GL015884.
Kosarev, A. N. (2005). Physico-Geographical Conditions of the Caspian Sea. The Caspian Sea Environment. The Handbook of Environmental Chemistry, Springer, Berlin, Germany. doi:10.1007/698_5_002.
Kostianoy, A. G., Ginzburg, A. I., Lavrova, O. Y., Lebedev, S. A., Mityagina, M. I., Sheremet, N. A., & Soloviev, D. M. (2019). Comprehensive satellite monitoring of Caspian Sea conditions. Remote sensing of the Asian Seas, Springer, Cham, Switzerland. doi:10.1007/978-3-319-94067-0_28.
Kilpatrick, K. A., Podestá, G., Walsh, S., Williams, E., Halliwell, V., Szczodrak, M., Brown, O. B., Minnett, P. J., & Evans, R. (2015). A decade of sea surface temperature from MODIS. Remote Sensing of Environment, 165, 27–41. doi:10.1016/j.rse.2015.04.023.
Obenour, K. M. (2013). Temporal trends in global sea surface temperature fronts. Master Thesis, University of Rhode Island, Kingston, United States.
Jishad, M., & Agarwal, N. (2022). Thermal Front Detection Using Satellite-Derived Sea Surface Temperature in the Northern Indian Ocean: Evaluation of Gradient-Based and Histogram-Based Methods. Journal of the Indian Society of Remote Sensing, 50(7), 1291–1299. doi:10.1007/s12524-022-01527-6.
Cayula, J. F., & Cornillon, P. (1992). Edge detection algorithm for SST images. Journal of Atmospheric & Oceanic Technology, 9(1), 67–80. doi:10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2.
Ullman, D. S., & Cornillon, P. C. (2000). Evaluation of front detection for satellite-derived SST data using in situ observations. Journal of Atmospheric and Oceanic Technology, 17(12), 1667–1675. doi:10.1175/1520-0426(2000)017<1667:EOFDMF>2.0.CO;2.
Kahru, M., Håkansson, B., & Rud, O. (1995). Distributions of the sea-surface temperature fronts in the Baltic Sea as derived from satellite imagery. Continental Shelf Research, 15(6), 663–679. doi:10.1016/0278-4343(94)E0030-P.
Nieto, K., Demarcq, H., & McClatchie, S. (2012). Mesoscale frontal structures in the Canary Upwelling System: New front and filament detection algorithms applied to spatial and temporal patterns. Remote Sensing of Environment, 123, 339–346. doi:10.1016/j.rse.2012.03.028.
Blythe, J. N., Da Silva, J. C. B., & Pineda, J. (2011). Nearshore, seasonally persistent fronts in sea surface temperature on Red Sea tropical reefs. ICES Journal of Marine Science, 68(9), 1827–1832. doi:10.1093/icesjms/fsr109.
Ren, S., Zhu, X. U., Drevillon, A., Wang, H., Zhang, Y., Zu, Z., & Li, A. (2021). Detection of sst fronts from a high-resolution model and its preliminary results in the south China sea. Journal of Atmospheric and Oceanic Technology, 38(2), 387–403. doi:10.1175/JTECH-D-20-0118.1.
Karami, H., Akbarinasb, M., & Safarad, T. (2018). Detection coastal thermal fronts in the Persian Gulf and the Oman Sea using MODIS images. Journal of Marine Science and Technology, 17(3), 34-44. (In Persian).
Puthezhath, A. S. (2014). Identification of thermal fronts in the Arabian sea using MODIS-SST data. Master Thesis, Kerala University of Fisheries And Ocean Studies, Ernakulam, India.
Diehl, S. F., Budd, J. W., Ullman, D., & Cayula, J. F. (2002). Geographic window sizes applied to remote sensing sea surface temperature front detection. Journal of Atmospheric and Oceanic Technology, 19(7), 1105–1113. doi:10.1175/1520-0426(2002)019<1105:GWSATR>2.0.CO;2.
Roberts, J. J., Best, B. D., Dunn, D. C., Treml, E. A., & Halpin, P. N. (2010). Marine Geospatial Ecology Tools: An integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C++. Environmental Modelling and Software, 25(10), 1197–1207. doi:10.1016/j.envsoft.2010.03.029.
Tseng, C.-T., Sun, C.-L., Belkin, I. M., Yeh, S.-Z., Kuo, C.-L., & Liu, D.-C. (2014). Sea surface temperature fronts affect distribution of Pacific saury (Cololabis saira) in the Northwestern Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 107, 15–21. doi:10.1016/j.dsr2.2014.06.001.
Wall, C. C., Muller-Karger, F. E., Roffer, M. A., Hu, C., Yao, W., & Luther, M. E. (2008). Satellite remote sensing of surface oceanic fronts in coastal waters off west-central Florida. Remote Sensing of Environment, 112(6), 2963–2976. doi:10.1016/j.rse.2008.02.007.
Canny Edge Detection. (2009). Available online: http://opencvexamples.blogspot.com/2013/10/void-canny-inputarray-image-outputarray.html (accessed on October 2024).
Hrytsyk, V., Medykovskyy, M., & Nazarkevych, M. (2022). Estimation of Symmetry in the Recognition System with Adaptive Application of Filters. Symmetry, 14(5), 903. doi:10.3390/sym14050903.
Mansoury, D., Sadrinasab, M., & Akbarinasab, M. (2018). Seasonal and annual variability in wind fields and circulation of surface waters of the Caspian Sea. Journal of Marine Science and Technology, 17(1), 68-82.
Shiea, M., & Bidokhti, A. A. (2015). The study of upwelling in the eastern coast of the Caspian Sea using numerical simulation. Journal of the Earth and Space Physics, 41(3), 535–545.
Lavrova, O., & Mityagina, M. (2017). Satellite survey of internal waves in the Black and Caspian Seas. Remote Sensing, 9(9), 892. doi:10.3390/rs9090892.
Kaleji, S. , Akbarinasab, M. , & Einali, A. (2024). Comparison of SIED and Canny Algorithm in Caspian Sea Surface Temperature Front Detection Using Satellite Image. Contributions of Science and Technology for Engineering, 1(2), 9-18. doi: 10.22080/cste.2024.5091
MLA
Shahnaz Kaleji; Mohammad Akbarinasab; Abbas Einali. "Comparison of SIED and Canny Algorithm in Caspian Sea Surface Temperature Front Detection Using Satellite Image", Contributions of Science and Technology for Engineering, 1, 2, 2024, 9-18. doi: 10.22080/cste.2024.5091
HARVARD
Kaleji, S., Akbarinasab, M., Einali, A. (2024). 'Comparison of SIED and Canny Algorithm in Caspian Sea Surface Temperature Front Detection Using Satellite Image', Contributions of Science and Technology for Engineering, 1(2), pp. 9-18. doi: 10.22080/cste.2024.5091
CHICAGO
S. Kaleji , M. Akbarinasab and A. Einali, "Comparison of SIED and Canny Algorithm in Caspian Sea Surface Temperature Front Detection Using Satellite Image," Contributions of Science and Technology for Engineering, 1 2 (2024): 9-18, doi: 10.22080/cste.2024.5091
VANCOUVER
Kaleji, S., Akbarinasab, M., Einali, A. Comparison of SIED and Canny Algorithm in Caspian Sea Surface Temperature Front Detection Using Satellite Image. Contributions of Science and Technology for Engineering, 2024; 1(2): 9-18. doi: 10.22080/cste.2024.5091