The liver, as the largest internal organ in the human body, plays a pivotal role in numerous physiological processes, orchestrating over 500 metabolic activities crucial for maintaining bodily functions. However, the Hepatitis C Virus (HCV) poses a grave threat to liver health, necessitating early identification of liver diseases to halt the progression to carcinoma and potentially save lives. This research aims to train ensemble-based algorithms for classifying and detecting Hepatitis, Fibrosis, and Cirrhosis. Employing rigorous preprocessing techniques, 80% of the dataset was allocated to train five ensemble-based algorithms: AdaBoost, Random Forest, Rotation Forest, XGBoost, and LightGBM. These algorithms were evaluated across four performance metrics—accuracy, precision, recall, and F1-score. Remarkably, LightGBM emerged as the frontrunner, boasting an exceptional accuracy rate of 98.37%. Rotation Forest followed closely with an accuracy of 96.74%, while XGBoost attained an accuracy of 95.12%. Random Forest and AdaBoost secured 94.19% and 93.30% accuracy, respectively. These findings underscore LightGBM’s prowess as a promising algorithm for detecting and classifying liver diseases. By leveraging advanced machine learning techniques, particularly ensemble-based algorithms, this research contributes to the ongoing efforts to enhance early detection, improve patient outcomes, and foster more effective management strategies for liver-related ailments in clinical settings
Solomon, E. P., Berg, L. R., Martin, D. W. (2014). Biology. Brooks/Cole Thomson Learning, Boston, United States.
Rehermann, B., & Nascimbeni, M. (2005). Immunology of hepatitis B virus and hepatitis C virus infection. Nature Reviews Immunology, 5(3), 215–229. doi:10.1038/nri1573.
Institute for Quality and Efficiency in Health Care (IQWiG) (2023). In brief: How does the liver work?. Institute for Quality and Efficiency in Health Care (IQWiG), New York, United States. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279393/ (accessed on August 2024).
Park, S.-J., & Hahn, Y. S. (2023). Hepatocytes infected with hepatitis C virus change immunological features in the liver microenvironment. Clinical and Molecular Hepatology, 29(1), 65–76. doi:10.3350/cmh.2022.0032
Campollo, O., Amaya, G., & McCormick, P. A. (2022). Milestones in the discovery of hepatitis C. World Journal of Gastroenterology, 28(37), 5395–5402. doi:10.3748/wjg.v28.i37.5395.
[6] Ramos-Tovar, E., & Muriel, P. (2020). Molecular Mechanisms That Link Oxidative Stress, Inflammation, and Fibrosis in the Liver. Antioxidants, 9(12), 1279. doi:10.3390/antiox9121279.
Mohd Hanafiah, K., Groeger, J., Flaxman, A. D., & Wiersma, S. T. (2013). Global epidemiology of hepatitis C virus infection: New estimates of age-specific antibody to HCV seroprevalence. Hepatology, 57(4), 1333–1342. doi:10.1002/hep.26141.
Harabor, V., Mogos, R., Nechita, A., Adam, A.-M., Adam, G., Melinte-Popescu, A.-S., Melinte-Popescu, M., Stuparu-Cretu, M., Vasilache, I.-A., Mihalceanu, E., Carauleanu, A., Bivoleanu, A., & Harabor, A. (2023). Machine Learning Approaches for the Prediction of Hepatitis B and C Seropositivity. International Journal of Environmental Research and Public Health, 20(3), 2380. doi:10.3390/ijerph20032380.
Zhang, C., Shu, Z., Chen, S., Peng, J., Zhao, Y., Dai, X., Li, J., Zou, X., Hu, J., & Huang, H. (2024). A machine learning-based model analysis for serum markers of liver fibrosis in chronic hepatitis B patients. Scientific Reports, 14(1), 12081. doi:10.1038/s41598-024-63095-8.
Elshewey, A. M., Shams, M. Y., Tawfeek, S. M., Alharbi, A. H., Ibrahim, A., Abdelhamid, A. A., Eid, M. M., Khodadadi, N., Abualigah, L., Khafaga, D. S., & Tarek, Z. (2023). Optimizing HCV Disease Prediction in Egypt: The hyOPTGB Framework. Diagnostics, 13(22), 3439. doi:10.3390/diagnostics13223439.
Feng, S., Wang, J., Wang, L., Qiu, Q., Chen, D., Su, H., Li, X., Xiao, Y., & Lin, C. (2023). Current Status And Analysis Of Machine Learning in Hepatocellular Carcinoma. Journal of Clinical and Translational Hepatology, 11(5), 1184–1191. doi:10.14218/JCTH.2022.00077S.
Arjmand, A., Angelis, C. T., Tzallas, A. T., Tsipouras, M. G., Glavas, E., Forlano, R., Manousou, P., & Giannakeas, N. (2019). Deep Learning in Liver Biopsies using Convolutional Neural Networks. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). doi:10.1109/tsp.2019.8768837.
Park, H., Lo-Ciganic, W. H., Huang, J., Wu, Y., Henry, L., Peter, J., Sulkowski, M., & Nelson, D. R. (2022). Machine learning algorithms for predicting direct-acting antiviral treatment failure in chronic hepatitis C: An HCV-TARGET analysis. Hepatology, 76(2), 483–491. doi:10.1002/hep.32347.
Akella, A., & Akella, S. (2020). Applying machine learning to evaluate for fibrosis in chronic hepatitis c. MedRxiv, 2020-11. doi:10.1101/2020.11.02.20224840.
Maiellaro, P., Cozzolongo, R., & Marino, P. (2005). Artificial Neural Networks for the Prediction of Response to Interferon Plus Ribavirin Treatment in Patients with Chronic Hepatitis C. Current Pharmaceutical Design, 10(17), 2101–2109. doi:10.2174/1381612043384240.
Edeh, M. O., Dalal, S., Dhaou, I. Ben, Agubosim, C. C., Umoke, C. C., Richard-Nnabu, N. E., & Dahiya, N. (2022). Artificial Intelligence-Based Ensemble Learning Model for Prediction of Hepatitis C Disease. Frontiers in Public Health, 10, 892371. doi:10.3389/fpubh.2022.892371.
Prakash, N. N., Rajesh, V., Namakhwa, D. L., Dwarkanath Pande, S., & Ahammad, S. H. (2023). A DenseNet CNN-based liver lesion prediction and classification for future medical diagnosis. Scientific African, 20(e01629), 1629. doi:10.1016/j.sciaf.2023.e01629.
Park, H., Lo-Ciganic, W. H., Huang, J., Wu, Y., Henry, L., Peter, J., Sulkowski, M., & Nelson, D. R. (2022). Evaluation of machine learning algorithms for predicting direct-acting antiviral treatment failure among patients with chronic hepatitis C infection. Scientific Reports, 12(1), 18094. doi:10.1038/s41598-022-22819-4.
Wang, Y., Yin, B., & Zhu, Q. (2023). Application of Machine Learning Algorithms in Predicting Hepatitis C. Proceedings of the 2023 4th International Symposium on Artificial Intelligence for Medicine Science. doi:10.1145/3644116.3644176.
Butt, M. B., Alfayad, M., Saqib, S., Khan, M. A., Ahmad, M., Khan, M. A., & Elmitwally, N. S. (2021). Diagnosing the Stage of Hepatitis C Using Machine Learning. Journal of Healthcare Engineering, 2021, 8062410. doi:10.1155/2021/8062410.
Zhang, L., Wang, J., Chang, R., & Wang, W. (2024). Investigation of the effectiveness of a classification method based on improved DAE feature extraction for hepatitis C prediction. Scientific Reports, 14(1), 9143. doi:10.1038/s41598-024-59785-y.
Lilhore, U. K., Manoharan, P., Sandhu, J. K., Simaiya, S., Dalal, S., Baqasah, A. M., Alsafyani, M., Alroobaea, R., Keshta, I., & Raahemifar, K. (2023). Hybrid model for precise hepatitis-C classification using improved random forest and SVM method. Scientific Reports, 13(1). doi:10.1038/s41598-023-36605-3.
Alizargar, A., Chang, Y. L., & Tan, T. H. (2023). Performance Comparison of Machine Learning Approaches on Hepatitis C Prediction Employing Data Mining Techniques. Bioengineering, 10(4). doi:10.3390/bioengineering10040481.
Safdari, R., Deghatipour, A., Gholamzadeh, M., & Maghooli, K. (2022). Applying data mining techniques to classify patients with suspected hepatitis C virus infection. Intelligent Medicine, 2(4), 193–198. doi:10.1016/j.imed.2021.12.003.
Lichtinghagen, R., Klawonn, F., & Hoffmann, G. (2020). HCV data. UCI Machine Learning Repository, 10, C5D612.
Hair, J. F., Babin, B. J., Black, W. C., Anderson, R. E. (2019). Multivariate Data Analysis. Cengage, Boston, United Kingdom.
ickham, H., Grolemund, G. (2016). R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. O'Reilly Media, Sebastopol, United States.
Schapire, R.E. (2003). The Boosting Approach to Machine Learning: An Overview. Nonlinear Estimation and Classification. Lecture Notes in Statistics, 171, Springer, New York, United States. doi:10.1007/978-0-387-21579-2_9.
Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors). The Annals of Statistics, 28(2). doi:10.1214/aos/1016218223.
Rätsch, G., Onoda, T., & Müller, K. R. (2001). Soft margins for AdaBoost. Machine Learning, 42(3), 287–320. doi:10.1023/A:1007618119488.
Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783–2792. doi:10.1890/07-0539.1.
Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. Multiple Classifier Systems, MCS 2000, Lecture Notes in Computer Science, 1857, Springer, Berlin, Germany. doi:10.1007/3-540-45014-9_1.
Rodríguez, J. J., Kuncheva, L. I., & Alonso, C. J. (2006). Rotation forest: A New classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1619–1630. doi:10.1109/TPAMI.2006.211.
Chen, T., & Guestrin, C. (2016). XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. doi:10.1145/2939672.2939785.
Hastie, T., Friedman, J., & Tibshirani, R. (2001). The Elements of Statistical Learning. Springer Series in Statistics, Springer New York, United States. doi:10.1007/978-0-387-21606-5.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 4-9 December, 2017, Long Beach, United States.
Yousefpour, H. , & Ghasemi, J. (2024). Ensemble-Based Detection and Classification of Liver Diseases Caused by Hepatitis C. Contributions of Science and Technology for Engineering, 1(1), 32-42. doi: 10.22080/cste.2024.5012
MLA
Hannah Yousefpour; Jamal Ghasemi. "Ensemble-Based Detection and Classification of Liver Diseases Caused by Hepatitis C", Contributions of Science and Technology for Engineering, 1, 1, 2024, 32-42. doi: 10.22080/cste.2024.5012
HARVARD
Yousefpour, H., Ghasemi, J. (2024). 'Ensemble-Based Detection and Classification of Liver Diseases Caused by Hepatitis C', Contributions of Science and Technology for Engineering, 1(1), pp. 32-42. doi: 10.22080/cste.2024.5012
CHICAGO
H. Yousefpour and J. Ghasemi, "Ensemble-Based Detection and Classification of Liver Diseases Caused by Hepatitis C," Contributions of Science and Technology for Engineering, 1 1 (2024): 32-42, doi: 10.22080/cste.2024.5012
VANCOUVER
Yousefpour, H., Ghasemi, J. Ensemble-Based Detection and Classification of Liver Diseases Caused by Hepatitis C. Contributions of Science and Technology for Engineering, 2024; 1(1): 32-42. doi: 10.22080/cste.2024.5012