RESEARCH PAPER

Homepage:https://cste.journals.umz.ac.ir/

Contrib. Sci. & Tech Eng, 2026, 3(1)

DOI: 10.22080/cste.2025.28924.1025

Upper Boundof Policies for Statistical Model Checking of Markov

Decision Processes

Mohammad Sadegh Mohagheghi '*

! Assistant Professor, Department of Computer science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

Article Info

Received 03 April 2025

Accepted 29 September 2025
Available online 12 February 2026

Keywords:

Formal Verification;
Markov Decision Process;
Statistical Model Checking;
Confidence Interval.

Abstract:

State explosion remains a fundamental challenge in model checking. Statistical model checking
(SMC) offers a promising approach to mitigate this issue. Still, its application to Markov
decision processes (MDPs) is hindered by the computational difficulty of resolving
nondeterminism with near-optimal policies. Existing methods for policy selection within SMC
often suffer from limited memory efficiency or fail to guarantee the specified confidence level
for result accuracy. To address this, we introduce a novel statistical criterion for policy
evaluation and propose an efficient method for determining an upper bound on the number of
policies required to achieve a desired confidence level in the computed reachability
probabilities. Our method leverages the mean and standard deviation of reachability
probabilities obtained from a set of randomly sampled policies to derive this bound.
Experimental results validate the effectiveness of our approach and demonstrate that it provides

more reliable results in most cases.

© 2026 University of Mazandaran

*Corresponding Author: mohagheghi@vru.ac.ir

Supplementary information: Supplementary information for this article is available at https://cste.journals.umz.ac.ir/

Please cite this paper as:Mohagheghi, M. (2025). Upper bound of Policies for Statistical Model Checking of Markov Decision
Processes. Contributions of Science and Technology for Engineering, 3(1), 31-40. doi:10.22080/cste.2025.28924.1025.

1. Introduction

Formal verification employs mathematically-driven
methodologies to evaluate critical system properties in
hardware and software. Among formal verification
techniques, model checking automatically verifies whether
a system model satisfies specified requirements [1, 2].
Systems are typically modeled as transition systems,
whereas temporal logic formalisms specifybehavioral
properties. Model checkers systematically examine system
models to either validate compliance with requirements or
generate counterexamples for violated properties. For
stochastic systems, probabilistic extensions of transition
systems, such as discrete-time Markov chains (DTMCs) and
Markov decision processes (MDPs), are used. The
Probabilistic Computational Tree Logic (PCTL) framework
supports the specification of both qualitative and
quantitative system characteristics. These analyses often
focus on calculating reachability probabilities, defined as
the probability of reaching a goal state from an initial state.
In MDP analysis, determining extremal (minimum or
maximum) probabilities becomes essential. Probabilistic
model checking employs iterative graph-based algorithms
and numerical methods to compute these metrics [3, 4].

A well-known challenge of model checking across all
variants is the state explosion problem, i.e., exponential

growth in a model's state space with the number of system
components. A vast number of solutions have beenproposed
in the past three decades to alleviate this challenge. Most of
them are also customized for stochastic systems [2, 3].
Statistical model checking (SMC) as a simulation-based
approach with small (usually O(1)) space complexity has
been proposed and extended in recent years [5]. It simulates
a set of traces to verify a given property. For the case of
quantitative properties, SMC is expected to approximate the
needed values by a given level of statistical confidence [6].
Consideringa bound for tolerating errors in computed
values and 6 for the probability of false precision (abusing
the desired bound of errors), SMC uses enough Monte Carlo
simulations to guarantee that the computed value is precise
with the proposed confidence interval (CI) [6-9].

For MDPs models, SMC needs to resolve non-
deterministic choices. In model checking of MDPs, the
notion of a policy, defined as a mapping from states to
actions, is a standard approach to resolving these choices [1,
3]. For each policy, a Discrete time Markov chain (DTMC)
is induced and the problem is reduced to analyzing the
behavior of the induced DTMC. In exhaustive probabilistic
model checking, iterative methods (like policy iteration [3])
are used to approximate the optimal policy that maximizes
(or minimizes) a reachability probability. However, an
explicit representation of policies must store the optimal

© 2026 by the authors. Licensee CSTE, Babolsar, Mazandaran. This article is an open access article distributed under the terms and
B conditions of the Creative Commons Attribution (CC-BY) license (https://creativecommons.org/licenses/by/4.0/deed.en)

ISSN3060-6578

https://cste.journals.umz.ac.ir/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
https://foreign.umz.ac.ir/
mailto:mohagheghi@vru.ac.ir
https://cste.journals.umz.ac.ir/

Mohagheghi /Contrib. Sci. & Tech Eng, 2026, 3(1)

action for each state, which contradicts SMC'sO(1) space
complexity. Several techniques have been proposed to
approximate optimal policies for MDPs with SMC. These
techniques primarily rely on considering a large set of
policies or employing elimination techniques to identify a
near-optimal policy [6, 10-14]. While these techniques yield
promising results for some classes of case study models,
they cannot be generalized to all classes of MDPs, and their
main challenge is that they do not guarantee the precision of
the computed value at the desired confidence level. An
example of a complex case is the consensus (coin) MDP
model, which represents a distributed agreement protocol in
which processes repeatedly vote and flip coins to reach
consensus. The objective is to maximize the probability of
reaching a unanimous agreement within a deadline [15].
Finding the optimal policy is challenging due to state-space
explosion: the model’s state space grows exponentially with
the number of processes and rounds, and nondeterminism
requires evaluating all possible schedulers that resolve
process decisions at each step. Additionally, the
probabilistic branching from coin flips multiplies
computational complexity, making exact dynamic planning
intractable for non-trivial instances. These factors
collectively ~ necessitate heuristic =~ methods or
approximations instead of exact solutions.

Focusing on unbounded extremal reachability
probabilities, this paper develops new techniques to address
the aforementioned SMC problems for MDPS. The
possibility of applying these techniques to the class of
bounded reachability probabilities remains for future
work.To do so, we define a criterion for optimality of a
given policy. It is based on comparing the average of
computed values for the given policy with the average of
exact values. For a near-optimal policy, the first value
converges to the second one. Based on this criterion, we
provide a CI for the relative distance of computed values to
their exact ones and we can analyze the precision of the
current techniques for approximating optimal policies. We
then develop a method to determine an upper bound for the
minimum number of policies that should be examined to
find a "near-optimal” one, i.e., the one that is guaranteed to
be in a confidence interval with the proposed for errors and
1 — & probability of confidence. To the best of our
knowledge, no previous work has proposed such an upper
bound for the number of needed policies. Our proposed
method is based on the central limit theorem [16, 17].

1.1. Related Works

The first work on resolving non-deterministic choices in
MDPs is the Kearns sparse sampling algorithm for
discounted Markov reward models [18]. It is based on
unfolding a model to a limited depth to approximate the
optimal action for each state. For reachability properties of
MDPs, a SMC algorithm is presented by Henriques et al.
[11] that determines near-optimal policies with a specified
probability of satisfying the underlying LTL property. For
the PCTL class of properties, a SMC algorithm is developed
by Ashok et al. [19] that uses bounded real-time dynamic
programming to approximate the optimal policy with a
given level of precision. These two algorithms are

32

implemented in the PRISM model checker. While both
works employ machine learning to converge to optimal
policies, their efficiency depends on the structure of the
underlying MDP. Both approaches require storing selected
actions for the explored states during simulations [7, §]. In
the worst case, their space complexity is O(n), which
violates the memory-independence property of SMC
methods. Hence, they are typically applicable to moderate-
sized models. Our proposed approach, however, requires a
limited amount of memory regardless of model size and can
be used with large models. On the fly algorithms are
proposed in literature [7, 14, 20] that focus on the presented
PCTL property to remove spurious non-deterministic
choices of a model. Again, this class of techniques depends
on the structure of the model and cannot resolve all non-
deterministic choices in any MDP. Compared with these
techniques, our proposed technique is independent of the
model structure and applies to all MDP cases.

To address these challenges, policy sampling methods are
proposed in literature [6, 8, 18] that use a four-bit integer
and a pseudorandom number generator to generate a set of
random memoryless policies. These methods (referred to as
lightweight sampling methods for SMC) are based on
considering a large set of random policies and
approximating reachability probabilities by applying
standard SMC to the induced DTMCs. They are developed
as the plasma-lab model checker and can utilize multi-core
processing to reduce runtime. These sampling methods rely
on the assumption that with a high probability, a near-
optimal policy can be found in this set. Based on this
assumption, they propose a method to determine the number
of samples required to approach the optimal state values and
to assess the satisfaction of the proposed PCTL property.
However, this assumption is not always correct, and there is
no guarantee of the soundness of the approximated values
at a specified confidence level. The main benefit of our
approach is that it provides an upperbound on the number
of policy samples required to satisfy the conditions for
aconfidence interval. In addition to studies by Henriques et
al. [11], Budde et al. [13], and Ashok et al. [19], several
recent works have proposed using machine learning (ML)
methods to improve the performance of SMC sampling for
MDPs. ML is used by Rataj and Wozna-Szczes$niak [21] for
extrapolating the optimal policy of a given large MDP
model. Deep neural networks have been used by Gros et al.
[22] as black box determiners for MDP choices. The
precision of the computed values in these two works is
evaluated using several experimental results, but no formal
approximation for the soundness of their proposed results
has been proposed. Although their space complexity is
independent of model size, it is unclear how they can be
applied to any given large model. Moreover, another
challenge of ML-based methods is that they may converge
to local optima, and there is no known way to avoid this in
statistical model checking. Our approach considers a large
set of policies and identifies at least one near-optimal policy
that satisfies the given CI conditions. An extension of smart
sampling for SMC of rare events in MDPs is proposed by
Budde et al. [12]. It is developed as a mode-based model
checker [23], relies on the same assumptions as Legay et al.

Mohagheghi /Contrib. Sci. & Tech Eng, 2026, 3(1)

[8], and proposes confidence intervals for simulation
precision.

The SMC has been used in recent years to cover other
classes of properties. A PAC statistical model-checking
approach for mean-payoff games has been proposed by
Agarwal et al. [24]. A PAC Learning Algorithm has been
proposed by Perez et al. [25] for LTL and Omega-Regular
Objectives over MDP models. Decision trees, as a class of
machine learning techniques, are used by Azeem et al. [26]
to yield more reliable results, whereas SMC is applied to
MDP models.

2. Preliminaries

We review important concepts about Markov decision
processes and statistical model checking. For a countable set
R we use |R| as its size, i.e., the number of its members. For
a random variable z we use ¢(z) as its standard normal
distribution.

2.1. Markov Decision Processes

Definition 1. A Markov Decision Process (MDP) is a
tupleM = (S, s,, Act, P G) where S is a finite set of states,
So € S is the initial state, Act is a finite set of actions where
for every state s € S, Act(s) denotes the non-empty set of
enabled actions for s; P:S X Act XS — [0,1] is the
transition probability function such that for each state s € S
and each enabled action «a € Act we have:
Ysres P(s,a,s") € {0,1}. G c S is a set of target states. In
this definition, transition is a triple (s, @, s") for whichs, s’ €
S and a € Act and P(s,a,s") > 0. For any state s € Sand
an enabled action a € Act(s) we define Post(s) = {t €
S|P(s,a,t) > 0} as the set of @ —successors of s. A path in
an MDP, is a non-empty (finite or infinite) sequence of
states and actions of the form w =s,ay— s;a; =
s,a, = ...where P(s;, a;, ;1) > 0 foreachi = 0. We use
w(i) to denote the (i + 1)th state inthe path w. Path
denotes the set of all paths starting in state s and FPath, is
the set of all finite paths. A discrete-time Markov chain
(DTMC) is an MDP in which every state has exactly one
enabled action [1]. The successor state of each state of an
MDP is determined in two steps. For any state s € S, the
first step selects one of the enabled actions Act(s) non-
deterministically. The second step, selects the next state
randomly using the probability distribution P (s,).

In the probabilistic model checking, a set of properties are
specified in PCTL or probabilistic LTL. In this paper, we
focus on the extremal unbounded reachability probabilities,
defined as the maximum or minimum probability of
reaching a target state G [1, 3]. To analyze the probabilistic
behaviour of an MDP M, the notion of policy (also called
adversary or scheduler) is used to resolve its non-
deterministic choices. In this paper, we consider only
deterministic, memoryless policies, which are sufficient for
computing the extremal reachability probabilities [3, 27,
28]. A (deterministic and memory-less) policy for M is a
function m: S — Act that for every state s € S selects an
action a € Act(s). We use Pol,, for the set of all policies
of M. Each policy m € Pol,, induces a DTMC M™ by
disregarding non-selected actions. Verifying reachability
probabilities for a given MDP is reduced to finding an

33

optimal policy m* that optimizes reachability probabilities
of all states. [1-3]. For unbounded reachability probabilities,
memory-less policies are enough to compute the optimal
values. For bounded reachability probabilities, however,
memory-based policies are needed [3]. Iterative numerical
methods, such as value iteration, policy iteration, and
interval iteration [3, 4] are used in practice to approximate
extremal reachability probabilities. For each state s; € S an
iterative method uses a variable x; as an approximation of
its maximal reachability probability. We use x; as the
computed (or approximated) optimal value for s; and define

the mean of optimal values as MOV = %leisn x;. We may

use MOV™ to denote MOV for a given model M if we have
several models. Iterative methods for probabilistic model
checking and their soundness are explained by Baier and
Katoen [1], Baier et al. [2], and Hartmanns and Kaminski

[4].

2.2. Statistical Model Checking (SMC)

Instead of applying exhaustive search on a given model,
SMC generates a set of sample runs to simulate the
behaviour of a model. The model checker verifies each run
to determine whether it satisfies the given property or not.
After simulation, the sample statistics are used to estimate
the error rate at a specified confidence level, satisfying the
given property [9, 12, 29]. To provide a guarantee for the
precision of the approximated values, a statistical model
checker should determine the number of simulation runs
based on the given minimum error rate € and confidence
level &. Based on these parameters, a confidence interval
(CD) is proposed for the correctness of the approximated
values. The standard way in SMC for DTMC models is to
determine M as the number of simulation runs such that
Pr(xVog—xol <€) =1-8 where x,¥ is the
approximated value for s, after running N iterations. Most

model checkers follow Hoeffding's Inequality as:
(%
M= ZE‘;‘) It is used when a model checker supports CI for

verification of probabilistic systems [20, 27, 30]. In this
paper we rely on CI for reachability probabilities of
DTMCs, i.e., for any given MDP M, policy 7 , thresholds €
and 6 for errors and confidence level, we follow the
standard approaches to determine the number n of required
simulations to guarantee the precision of values at the
desired level [7, 8, 12, 31, 32].

2.3. Central Limit Theorem

The Central Limit Theorem (CLT) states that when
independent random variables are summed or averaged,
their distribution tends toward a normal distribution
(Gaussian) as the sample size increases, regardless of the
original population's distribution. Essential assumptions
that need to apply CLT are as follows:

1. Independence: Observations must be independent, e.g.,
random sampling with replacement or from an infinite
population.

2. Finite Mean and Variance: The population must have a
finite mean (1) and finite variance (0 2#o).

Mohagheghi /Contrib. Sci. & Tech Eng, 2026, 3(1)

3. Sample Size (n) must be sufficiently large (n > 50 in
most cases).

3. The Proposed Method for an Upper Bound
for the Number of Policy Samples

A main drawback of the smart sampling method and its
extensions for SMC of MDPs is that their computational
precision relies on the likelihood of finding a near-optimal
policy among a set of randomly selected policies [12]. There
are MDP models for which a main part of non-deterministic
choices are spurious, or the impact of choosing an optimal
action over the other ones is negligible for most states [7,
30]. In such cases, smart sampling can find a near-optimal
policy with high probability. However, there are cases for
which the number of policies increases exponentially in the
number of states, while infinitely small parts of them are
near-optimal.

Example 1 .Consider the MDP of Figure 1 with n states
where s, is the goal state and s,,_ a trap state and any other
state have two actions. There are 2"~2 policies for this MDP,
of which only one is optimal. For any policy with k non-
optimal actions, the probability of reaching the goal from s,
is zik . Consider a case in which we need to find a policy that

is at least 50% near-optimal, meaning that at most one non-
optimal action is acceptable. There are n — 1 policies from
2" 2ones that satisfy this condition. As a result, with a

probability of nz—_nl, A randomly selected policy is at least
50% optimal. For n = 50, this probability is ;798 =17E —
13 that means with a probability of 1 — 1.74F —13. A
randomly selected policy is less than 50% optimal. Having
m different randomly selected policies, the probability of
50% near-optimality is 1 — (1 — 1.74E — 13)™. For this

g O _q37p 4
log (1-1.74E—13)

13 policies to be 90% confident to have at least one 50%
near-optimal policy.

example, one should consider

Figure 1. An MDP example with 2”2 Possible Policies

3.1. Policy Evaluation

To assess how well a policy approximates reachability
probabilities and how well it can be used in SMC, we define
a criterion for policy optimality. For each state s; € S we
use x; for its extremal probability of reaching a target state.
For a policy = we use x[* for the probability of reaching a
target state under . We use Abs_err(x[) and Rel_err(x[")
for the absolute and relative errors in the computed
reachability values under m: Abs_err(m) = |x; — x[| and

T
|x;‘—xi |

Rel_err = In this section, we define a criterion

max {x}x]'}’

34

for the fitness of a given policy by comparing the computed
reachability probabilities of its induced DTMC with their
exact values. A standard criterion for computation errors is
the mean square error of computed values [28]. However,
due to technical constraints, we consider mean errors.

Definition 1. (Mean absolute and mean relative errors) For
an MDP M and a given policy mwe use MAE(m) and
MRE () for mean absolute errors and mean relative errors
of computed reachability probabilities under and define
them as:

MAE () = % i Abs_err(x]) = %Z?ﬂlx{’ —x; 1)
and

1 1 xF—x;
MRE () = — Xt Rel_err(x]) = - ?=1W)

For maximal reachability probabilities x; = x* holds for

each s; € S. In this case, for Equation 1 we have MAE (1) =

1 1 ..
=Xr, xf ==X, xF. On the other hand, for minimal
n n

reachability probabilities x; < x* holds for each state and
we have MAE(m) =i AT —%Z?zl x;. Similar cases
hold for mean average errors. For maximal reachability
probabilities MRE(T) = =3, "

—+—L and minimal
x{#0 x}

s *
Xi TX

* .
x; *0 xl?T

reachability probabilities MRE (1) = %Z

Mean relative error provides a more precise estimate of the
likelihood of policy optimality. However, this method
requires knowing the exact values x;, which are not always
available. Instead, mean absolute error (MAV) can be
computed using the mean of exact values (MOV). MOV can
be approximated without precisely estimating each x; . In
the next section, we propose an approach for approximating
MOV. The ability to approximate MOV for MAV
computation is the primary reason for using mean absolute
error in Equationl instead of mean squared error.

Using different random policies 7, one can consider x7* as
a random variable. In SMC, we are interested in controlling
the precision of the approximated value for s,. In general,
there is not any assumption about the probability
distribution of x* over a set of random policies [16]. For
SMC of MDPs, we focus on Equations 1 and 2 to control
the precision of the approximated value in the induced
DTMCs. In general, for a random policy with MRE () =
& we expect Rel_err(x]) to be around § unless we have
some more information about the probability distribution of
(xF). In the case of lack of knowledge about this
distribution, we use the following lemma to relate
Rell_err(x{) to MRE(m). In the remainder of this paper,
we rely on this lemma and focus on MRE (7).

Lemma 1. For a given policy T € POL,, let MRE(m) = 6.
For an error rate € and any state s; € S, in the worst case
(over all possible policies) we have:

Pr (Rell_err(x}) =€) = g

3)

Mohagheghi /Contrib. Sci. & Tech Eng, 2026, 3(1)

. . . s
which means with probability 1 — > for any state s; we have
xi" within F€ of x;.

Proof: Suppose in the worst case the probability that
Rel_err(x) = € is . The worst case happens when for
100 X B percent of states s € S, Rel_err(x™) is equal to €
and for the other states Rel_err(x™) is equal to 0. On the
other side, the average of this value should be §, which

means € X f + 0 X (1 —B) = §. As a result, we have f =
5

€

Example 2. Consider for a selected policy m we have
MRE () = 0.01 and let e = .1 as the maximum error rate.
Using lemma 1 we have Pr(Rel_err(xf) =0.1) <0.1
that means with the probability of .9 (as confidence level)
the relative error of the computed value for the initial state
is 0.1. Note that we may conclude more precise CI if we
have some information about probability distribution of x§
over different policies . Note that lemma 1 also holds if
one considers absolute errors, i.e., using MAE(m) and
Abs_err(x]") in the lemma. Having € and & as the CI
parameters, one can use Lemma 1 to compute the required
precision of the total computed values.

3.2. Upper-bound for Number of Policies

A key step in SMC is evaluating the precision of the
approximation. For MDPs, it should also assess the
precision of the selected policies and determine how many
policies are needed to obtain a near-optimal policy that
satisfies the conditions of the proposed confidence interval.
Considering Rand_Pols as a set of randomly selected
deterministic policies, we develop a method to compute an
upper boundfor the size of Rand_Pols to have at least one
near-optimal policy,i.e., for a given probability § of
confidence and an error bound € and for the best policy
TMpestOf Rand_Pols we have Pr (MRE (mtp,s) = €). To the
best of our knowledge, no previous work has proposed such
a bound on the number of random policies for satisfying the
conditions of precision except some memory-dependent
works [11, 19]. Note that the smart sampling method [6]
compares the true probability of the best candidate policy
found with the estimated probability of the best candidate
policy by considering a sample set of policies.

Using Pol,, as the set of all possible random policies of the
given MDP M, one can consider MRE as a random variable
over this set of policies. Having the probability distribution
of this random variable, it is possible to determine the
number of policies that satisfy the conditions of CI. In
general, the structure of a model affects this probability
distribution. For a large model with a huge number of states,
we expect that with a high probability, for each pair of states
(sq, sj). The impact of their value on one another is
negligible. As a result, we can use the central limit theorem
(CLT) and consider a normal distribution for MRE. More
precisely, the second and third assumptions for CLT (as
proposed in 2.3) hold for large MDP models: the state space
is large enough and both the mean and variance of values
are always finite because each state value is less than or
equal to 1. For the first assumption, if there are a limited
number of Dirac transitions, we expect that the value of each

35

state depends on the values of a small subset of states, and,
with high probability, the values of any two states are
independent. The normal distribution is also used as default
in modest for the mean of state values [16]. Although in
general, considering normal distribution for MRE may not
be correct, our experiments show that it holds for most case
studies. Considering a normal distribution for MRE (or
MAE), we apply the following lemma to compute an upper
bound for the number of policies to find a near-optimal one.

Lemma 2. Suppose MRE is a random variable with normal
distribution with ¢ and ¢ as its mean and standard deviation.
Let N = |Rand_Pols| be the size of a sample set of
policies. For a given probability § and error bound €, there

exists a policy Tyest € Rand_Pols where
Pr(MRE (mTyes,) = €) < 8 if:
log (&)
N 2 [—] @)

log (1—¢(G‘T“))

Proof. Based on the assumptions, for a random policy 7 €
Pol,, the probability that its MRE is less than € is computed
as:

PROME) <)= pr (252 < 52) o

®)

As a result, Pr(MRE(m) =€) =1— <D(%). As for any

two policies m,, 1, the reachability probability of state in
the induced DTMCs are independent, we consider
MRE (m;) and MRE(1,) as two independent events. Hence,
for a Rand_Pols set with N policies, the probability that for
all policies m € Rand_Pols we have Pr(MRE(m) =€) =

N
(1 —-@ (%)) . To satisfy the conditions of the lemma, we

N
should find the first N for which (1 @ (%)) < 6 holds

log (%)]

> [——2
that means N > [log o5

We can use MAE instead of MRE in this lemma and have
the same results. As a result, Lemma 2 can be used as a
statistical criterion to estimate the upper bound for the
number of random policies to find a near optimal one with
the provided level of confidence. Having the values of § and
€ as the parameters of CI and considering p and o as the
mean and standard deviation for a set of random policies,

we can determine the required upper bound as
[log (8)]
log (1-o(SE)™

Notice that for applying SMC for MDP models and for a
given confidence level 1 —§ and margin error € as the
conditions of CI, we should consider two steps to satisfy
these conditions: the first step should select a sample of
policies based on the given parameters, and the second step
should run sufficient simulations to approximate the
required reachability probabilities. However, these steps are
independent and each has its own error rate. Hence, we
need to consider two error rates €; and €, such that they
satisfy the overall conditions of CI. In this paper, we

considere; = €, = % to determine the values of N and M as
the number of policies and simulation runs.

Mohagheghi /Contrib. Sci. & Tech Eng, 2026, 3(1)

Example 3. We propose the PRISM program for a small
MDP with 8 states, as shown in Figure 2. The first 6 states
of this MDP have exactly two actions. The last state (where
s = 8) is a goal state, and its predecessor is a dead state that
cannot reach any other state.

1|mdp

2|module m

3s : [1..8];

4[1s=1->(s' =2);

5[[]1 s <=2 -> .5:(s' =4) + .5:(s' =6);

6/[1 s=2->1/3:(s' =1) + 1/3:(s' =2) + 1/3:(s' = 3);
71[1 s>2&s <=6 -> .1:(s' =5s5-2) + .2:(s' =5s-1) +
8 .3:(s' = s+1) + .4:(s' = s+2);

9/[1 s =3 -> .25:(s' = 1) + .5:(s' =4) + .25:(s' =7);
10|[] s =4 | s=5->.2:(s'" =5 - 3) + .2i(s" =5 - 1) +
11 2:(s'"' =s + 1) + .2:(s" =7) + .2:(s' =8);
12|[1 s =6 -> .5: (s' =3) + .3:(s' =4) + .2:(s' = 8);
13|[]1 s >=T7 -> (s' = s);

14| endmodule

15/1abel "goal" = s = 8;

Figure 2. The PRISM program of an MDP model with 8
states

For this small example, we consider all 2 = 64 possible
policies and compute MRE and MAE values for each
policy, using the optimal values of each state. To do so, for
each policy, we consider the induced DTMC, and for each
of the 6 states (excluding the goal and dead states), we run
1000 simulations to approximate the probability of reaching
the goal state from that state. The results for the first 20
policies are proposed in Figure 3. In this MDP model, for
MAE we have ¢ =.204 and ¢ =.073 and for MRE we
haveuy = .29 and o =.105. For these values and
considering § = .05 and € = .02 as the parameter values for
CI, we can use Lemma 2 and compute an upper bound for

g0 — 597.64

.02—-.29
log(1-o (222

Hence, to satisfy the CI conditions and given the specified
meanand standard deviation of MAE, we need to consider
at least 598 policies.

the number of policies as N >

MAE MRE

0.208134 0.299456
0.226751 0.325582
0.172228 0.24458
0.230932 0.33209
0.239937 0.340113
0.281499 0.402693
0.239313 0.343651
0.090376 0.128257
0.159229 0.226133
0.208134 0.299456
0.116892 0.165172
0.281499 0.402693
0.227049 0.326282
0.186122 0.264224
0.172228 0.24458
0.129896 0.183759
0.281723 0.399066
0.138241 0.195554
0.244652 0.351687
0.116892 0.165172

Figure 3. The computed MAE and MRE for the first 20
policies for MDP model of Example 2

Although Lemma 2 proposes a straightforward method to
compute an upper bound for the number of random policies
to find a near optimal one for SMC, several challenges exist
for applying it for large MDP model:

36

- It supposes that the distribution of MRE (or MAE) is
normal. Otherwise, the proposed upper-bound is not
reliable. This condition is verifiable by using some
standard tests (Kolmogorov-Smirnov test [33] for
example) for probability distributions.

- It is not easy to compute the exact values for 4 and o
(called true standard deviation in this section). Using a
random sample of policies, one can estimate these
quantities with a specified confidence level. These errors
in approximating ¢ and o should be considered in Lemma
2 to have a more conservative upper bound.

- Computing MAE and MRE relies on having exact values
of x; for each state s; € S. For feasible models, an
exhaustive model checker (e.g., PRISM) can apply the
interval iteration method to compute these values with the
desired precision. For such models, this lemma serves as
a benchmark for assessing the feasibility of using SMC.
For large models that expose the state explosion problem,
one can rely on MAE by using an approximation of MOV
In the worst case, we consider x; = 1 for all states in the
maximal and x; = 0 for all states in the minimal
reachability probabilities. Although this approximation
may be far from exact values, it provides a sound
upperbound on the number of policies. In the next section,
we propose a more realistic solution for this challenge.

- In the case of state explosion, it is not possible to compute
x[for all states s; € S. Instead, we consider a sample set
Ssampt © S of m states and for a given policy € Poly

1 L
our method uses ;Z X[’ as an approximation

Si€Ssamples
for MOV. To approximate each x7* it applies SMC on the
induced DTMC. In this approach, it is better to consider

MAE if % 2.1, x;can be approximated in some ways. This

solution introduces two new problems in the precision of
computations: First, the standard deviation of computed
values for the states of Ssg,p1s may be far from the true
standard deviation of MRE (or MAE). Increasing the size
of S¢ampres may reduce this error. Unfortunately, there is
not any simple method to determine an appropriate size
for the sample set Sgqpmpies- Our experiments show that
this standard deviation is at most two times larger than the
true standard deviation if we use m = 1000. Second,
using SMC for approximating reachability probabilities
of states of Ssgmpres introduces some errors in the
computed standard deviation. Our solution to
approximate the true standard deviation is to increase the
number of simulations. Based on the proposed parameters
€ and & of lemma 2 and the approximated standard
deviation of the state-values of Sgympres» One can
determine a bound for errors of SMC on the induced
DTMC and propose an upper bound for the number of
simulations for each state of Sggpies. Although our
solutions to these two challenges burden some overhead,
it is possible to apply a multi-processor to accelerate these
computations. In addition, some improved methods for
SMC of DTMC:s are available and can be used to enhance
these two solutions [16].

- In normal distribution, a random variable can have any

value in [—o0, +00]. However, we have 0 < MRE < 1.

Mohagheghi /Contrib. Sci. & Tech Eng, 2026, 3(1)

For the sake of simplicity, one can disregard the cases
where in normal distributionMRE > 1 or MRE < 0.
Otherwise, it is possible to consider truncated normal
distribution and extend the results of this section to this
distribution.

In this section, we propose a method for computing an
upper bound on the number of randomly selected policies
required to achieve the desired precision in SMC for
reachability probabilities in MDPs. We reviewed the
challenges of using Lemma 2 and proposed solutions. This
method can be applied to any set of policies that induces a
normal distribution of MRE and MAE values. Otherwise,
given a hypothesis about the probability distribution of
these random variables, some modifications are required to
apply Lemma 2.

In general, the time complexity of our proposed technique
for determining an upper bound on the number of policy
samples is independent of the size of the MDP models. It
mainly depends on the number of policies for statistical
analysis and also on € and § as the parameters of confidence
interval. Considering a constant memory consumption for
representing each policy, the space complexity of our
approach is in 0(1).

4. Experimental Results

To evaluate our proposed approaches, we consider six
case-study classes from the PRISM and STORM
benchmarks [27, 33]. Brief information on these case
studies, including their names, parameter values, numbers
of states, actions, and transitions, is presented in Table 1. We
use PRISM 4.6, the most recent available version, to
implement these approaches. The results of our experiments
are proposed in Table 2. In this table, we present the
approximate mean and standard deviation of MRE and
MAE, as defined in Equations]l and2. Depending on the
running times, we consider between 100 and 500 samples
for these approximations. We use the standard value-
iteration method [1] to compute state reachability
probabilities. We apply lemma 2 by setting § = 0.01 and
€ = 0.01to compute an upper bound for N as the size of a
sample set of policies. The upper bounds can be evaluated
in practice by applying Lemma 2 and using the computed
parameter values. These upper bounds can be more precise
if one can compute exact state values in advance. To do so,
we use the interval iteration method in PRISM to compute
precise values of states. The results of Table 2 demonstrate
that the computed upper bounds are so huge that it is not
easy to verify them directly. However, they primarily rely
on Lemma 2 and are applicable when state values are largely
independent.

Table 1. Information of the selected MDP models

Parameter

Model value IS| |Act] |Trans|

Coin3 K=20 25184 52224 65220

Coin4 K=20 206976 558208 697312
Firewrite ddI=1500 853408 1074328 1177444
Firewrite (dd1=4000) dd1=4000 2493408 3146828 3444944
Mer n=2000 11815564 45370339 46540354
Mer n=4000 23629564 90734339 93074354
Zeroconf K=10 3001911 5520579 6787615
Zeroconf K=18 5477150 10095684 12374708
Wlan3 TTM=2500 1082342 2125690 2206536
Wlan3 TTM=4500 1874342 3733690 3814536
Wlan tb3 (TTM=10) deadline=100 4767507 6160793 10160675
Wlan tb3 (TTM=10) deadline=150 8941451 11504363 19164337

Table 2. Computed Upper-bound for the number of policies

Model MRE MAE

(parameter) u o N u o N
Coin3(K=20) 0.285 .02 let31 0.024 1.45¢-3 4e+22
Coin4(K=20) 0.20 4.98e-3 3e+38 0.020 5.98e-4 3et3l
Firewrite (ddI=1500) 0.423 5.45e-4 2et787 0.427 5.57e-4 Tet+748
Firewrite (dd1=4000) 0.20 1.7e-4 8e+1117 0.02 1.74e-4 2e+58
Mer(n=2000) 0.806 8.02¢-3 3e+99 0.139 1.91e-4 5et+676
Mer(n=4000) 0.806 1.58e-4 6e+5037 0.139 1.58e-4 1e+816
Zeroconf(K=10) 0.938 6.34e-3 8etl46 0.49 1.7e-3 9e+282
Zeroconf(K=18) 0.969 7.18e-3 le+133 0.573 1.18e-3 4e+477

Wlan3 (TTM=2500) 0.363 9.43e-2 5750 8.7E-3 1.6e-3 9

Wlan3 (TTM=4500) 0.374 0.108 1375 8.84E-3 1.76¢-3 8
Wlan tb3 (dI=100) 0.765 3.14e-4 6e+2404 0.165 8.72e-4 6e+177

37

Mohagheghi /Contrib. Sci. & Tech Eng, 2026, 3(1)

Wilan tb3 (dI=150) 0.55 3.97e-4

9e+1360 0.137 8.3e-4 8e+153

In most cases, the approximated sigma values are so small
that the proposed upper bound on the number of policies
exceeds le+30. The only exception is the WLAN case
studies, where this upper bound is small, showing that LSS
can approximate reachability probabilities for these models
with the desired level of confidence. Although these results
are disappointing in some cases and the provided
upperbounds are so large that they are not useful in practice,
they show that more advanced techniques (such as machine
learning methods) are needed to guide SMC toward faster
convergence to optimal values.

We use the smart sampling method supported by the
Plasmalab model checker as the baseline and compare the
precision of the computed values with that of our method.
To do so, we consider our method while settingd = 0.01
and € = 0.01 as the parameters for CI and the default
parameters for Plasmalab model checker. We report
absolute errors for the results of running smart sampling
over case studies in Table 3. While we expect small errors
with high confidence, the reported errors are high in several
cases where the smart sampling method is applied.

Table 3. Absolute errors of running smart sampling as baseline

Model Parameter value Absolute error
Coin3 K=20 0.134
Coin4 K=20 0.087
Firewrite ddI=1500 0.453
Firewrite (dd1=4000) ddI=4000 0.521
Mer n=2000 0.032
Mer n=4000 0.046
Zeroconf K=10 0
Zeroconf K=18 0
Wlan3 TTM=2500 0.012
Wlan3 TTM=4500 0.024
Wlan tb3 delay=100 0.174
Wlan tb3 delay=150 0.218

5. Conclusion and Future Works

In this paper, we propose an approach to determine an
upper bound on the number of policies required to guarantee
that the conditions of a given CI are satisfied when applying
SMC to verify the unbounded reachability probabilities of
MDPs. Some challenges remain for future work.
Specifically, it is important to investigate how the structure
of an MDP model can affect the applicability of the central
limit theorem to our proposed techniques. Another
important research direction is to develop efficient machine
learning techniques with low space complexity to predict
near-optimal policies for large models. These techniques
can use neural networks or random forests to prioritize
actions, thereby accelerating convergence to optimal
policies. Using such techniques in our approach can yield a
higher mean value and reduce the number of policies
required to satisfy the CI conditions.

6. References

[1] Baier, C., &Katoen, J. P. (2008). Principles of model
checking. MIT press, Cambridge, United States.

[2] Baier, C., Hermanns, H., &Katoen, JP. (2019). The 10,000
Facets of MDP Model Checking. Computing and Software
Science. Lecture Notes in Computer Science, vol 10000.
Springer, Cham, Switzerland. doi:10.1007/978-3-319-
91908-9 21.

[3] Hartmanns, A., Junges, S., Quatmann, T., &Weininger, M.
(2023). A Practitioner’s Guide to MDP Model Checking
Algorithms. Tools and Algorithms for the Construction and
Analysis of Systems. TACAS 2023. Lecture Notes in
Computer Science, vol 13993. Springer, Cham,
Switzerland.doi: 10.1007/978-3-031-30823-9_24.

[4] Hartmanns, A., &Kaminski, B.L. (2020). Optimistic Value
Iteration. Computer Aided Verification. CAV 2020. Lecture
Notes in Computer Science, vol 12225. Springer, Cham,
Switzerland. doi:10.1007/978-3-030-53291-8 26.

[5] Younes, H.L.S., &Simmons, R.G. (2002). Probabilistic
Verification of Discrete Event Systems Using Acceptance
Sampling. Computer Aided Verification. CAV 2002. Lecture
Notes in Computer Science, vol 2404. Springer, Berlin,
Germany. doi:10.1007/3-540-45657-0_17.

[6] D’Argenio, P, Legay, A., Sedwards, S., & Traonouez, L. M.
(2015). Smart sampling for lightweight verification of
markov decision processes. International Journal on
Software Tools for Technology Transfer, 17(4), 469-484.
doi:10.1007/s10009-015-0383-0.

[7] Hartmanns, A.: On the analysis of stochastic timed systems.
Ph.D. thesis, Saarland University, Germany (2015)

[8] Legay, A., Sedwards, S., & Traonouez, LM. (2015). Scalable
Verification of Markov Decision Processes. In: Canal, C.,
Idani, A. (eds) Software Engineering and Formal Methods.
SEFM 2014. Lecture Notes in Computer Science, vol 8938.

Mohagheghi /Contrib. Sci. & Tech Eng, 2026, 3(1)

Springer, Cham, Switzerland. doi:10.1007/978-3-319-
15201-1_23.

[9] Kanav, S., Kietinsky, J., Larsen, K.G. (2025). Statistical
Model Checking the 2024 Edition!.Bridging the Gap
Between Al and Reality. AISoLA 2024. Lecture Notes in
Computer Science, vol 15217. Springer, Cham, Switzerland.
doi:10.1007/978-3-031-75434-0_21.

[10] Bogdoll, J., Hartmanns, A., &Hermanns, H. (2012).
Simulation and Statistical Model Checking for Modestly
Nondeterministic Models. Measurement, Modelling, and
Evaluation of Computing Systems and Dependability and
Fault Tolerance. MMB&DFT 2012. Lecture Notes in
Computer Science, vol 7201. Springer, Berlin, Germany.
doi:10.1007/978-3-642-28540-0 20.

[11] Henriques, D., Martins, J. G., Zuliani, P., Platzer, A., &
Clarke, E. M. (2012). Statistical Model Checking for
Markov Decision Processes. 2012 Ninth International
Conference on Quantitative Evaluation of Systems, 84-93.
doi:10.1109/qest.2012.19.

[12] Budde, C. E., D’ Argenio, P. R., Hartmanns, A., &Sedwards,
S. (2020). An efficient statistical model checker for
nondeterminism and rare events. International Journal on
Software Tools for Technology Transfer, 22(6), 759—780.
doi:10.1007/s10009-020-00563-2.

[13] Budde, C.E., Hartmanns, A., Meggendorfer, T., Weininger,
&M., Wienhoft, P. (2025). Sound Statistical Model
Checking for Probabilities and Expected Rewards. Tools
and Algorithms for the Construction and Analysis of
Systems. TACAS 2025. Lecture Notes in Computer Science,
vol 15696. Springer, Cham, Switzerland. doi:10.1007/978-
3-031-90643-5 9.

[14] Parmentier, M., Legay, A., Chenoy, F. (2024). Optimized
Smart Sampling. Bridging the Gap Between Al and Reality.
AISoLA 2023. Lecture Notes in Computer Science, vol
14380. Springer, Cham, Switzerland. doi:10.1007/978-3-
031-46002-9_10.

[15] Kwiatkowska, M., Norman, G., &Segala, R. (2001).
Automated Verification of a Randomized Distributed
Consensus Protocol Using Cadence SMV and PRISM.
Computer Aided Verification. CAV 2001. Lecture Notes in
Computer Science, vol 2102. Springer, Berlin, Germany.
doi:10.1007/3-540-44585-4 17.

[16] Reijsbergen, D., de Boer, P.-T., Scheinhardt, W.,
&Haverkort, B. (2014). On hypothesis testing for statistical
model checking. International Journal on Software Tools for
Technology Transfer, 17(4), 377-395. doi:10.1007/s10009-
014-0350-1.

[17] Okamoto, M. (1959). Some inequalities relating to the
partial sum of binomial probabilities. Annals of the Institute
of Statistical Mathematics, 10(1), 29-35.
doi:10.1007/BF02883985.

[18] Kearns, M., Mansour, Y., & Ng, A. Y. (2002). A sparse
sampling algorithm for near-optimal planning in large
Markov decision processes. Machine Learning, 49(2-3),
193-208. doi:10.1023/A:1017932429737.

[19] Ashok, P., Kietinsky, &J., Weininger, M. (2019). PAC
Statistical Model Checking for Markov Decision Processes
and Stochastic Games. Computer Aided Verification. CAV
2019. Lecture Notes in Computer Science, vol 11561.
Springer, Cham, Switzerland. doi:10.1007/978-3-030-
25540-4 29.

[20] Budde, C.E., D’Argenio, P.R., Fraire, J.A., Hartmanns, A.,
Zhang, Z. (2025). Modest Models and Tools for Real
Stochastic Timed Systems. Principles of Verification:
Cycling the Probabilistic Landscape. Lecture Notes in
Computer Science, vol 15261. Springer, Cham, Switzerland.
doi:10.1007/978-3-031-75775-4 6.

[21] Rataj, A., &Wozna-Szczes$niak, B. (2018). Extrapolation of
an Optimal Policy using Statistical Probabilistic Model
Checking. Fundamentalnformaticae, 157(4), 443-461.
doi:10.3233/F1-2018-1637.

[22] Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M.,
&Steinmetz, M. (2020). Deep Statistical Model Checking.
Formal Techniques for Distributed Objects, Components,
and Systems. FORTE 2020. Lecture Notes in Computer
Science, vol 12136. Springer, Cham, Switzerland.
doi:10.1007/978-3-030-50086-3_6.

[23] Kwiatkowska, M., Norman, G., &Parker, D. (2011). PRISM
4.0: Verification of Probabilistic Real-Time Systems.
Computer Aided Verification. CAV 2011. Lecture Notes in
Computer Science, vol 6806. Springer, Berlin, Germany.
doi:10.1007/978-3-642-22110-1_47.

[24] Agarwal, C., Guha, S., Kietinsky, J., &Pazhamalai, M.
(2025). PAC statistical model checking of mean payoff in
discrete- and continuous-time MDP. Formal Methods in
System Design, 66(2), 195-237. doi:10.1007/s10703-024-
00463-0.

[25] Perez, M., Somenzi, F., & Trivedi, A. (2024). A PAC
Learning Algorithm for LTL and Omega-Regular Objectives
in MDPs. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(19), 21510-21517.
doi:10.1609/aaai.v38i19.30148.

[26] Azeem, M., Chakraborty, D., Kanav, S., Kfetinsky, J.,
Mohagheghi, M., Mohr, S., &&Weininger, M. (2025). 1-2—
3—-Go! Policy Synthesis for Parameterized Markov Decision
Processes via Decision-Tree Learning and Generalization.
Verification, Model Checking, and Abstract Interpretation.
VMCALI 2025. Lecture Notes in Computer Science, vol
15530. Springer, Cham, Switzerland. doi:10.1007/978-3-
031-82703-7_5

[27] Clarke, E. M., Henzinger, T. A., Veith, H., &Bloem, R.
(Eds.). (2018). Handbook of Model Checking. Springer
International Publishing, Cham, Switzerland.
doi:10.1007/978-3-319-10575-8.

[28] D’argenio, P. R., Fraire, J., Hartmanns, A., &Raverta, F.
(2025). Comparing Statistical, Analytical, and Learning-
Based Routing Approaches for Delay-Tolerant Networks.
ACM Transactions on Modeling and Computer Simulation,
35(2). doi:10.1145/3665927.

[29] Meggendorfer, T., Weininger, M., &Wienhoft, P. (2026).
What Are the Odds? Improving Statistical Model Checking

Mohagheghi /Contrib. Sci. & Tech Eng, 2026, 3(1)

of Markov Decision Processes. Quantitative Evaluation of with laser-bent perforated sheets', Contributions of Science
Systems and Formal Modeling and Analysis of Timed and Technology for Engineering, 2(3), pp. 37-44. doi:
Systems. QEST+FORMATS 2025. Lecture Notes in 10.22080/cste.2025.28804.1019

Computer Science, vol 16143. Springer, Cham, Switzerland.

doi:10.1007/978-3-032-05792-1 11 [32] Hensel, C., Junges, S., Katoen, J. P., Quatmann, T., & Volk,

M. (2022). The probabilistic model checker Storm.

[30] Legay, A., Sedwards, S., &Traonouez, LM. (2016). Plasma International Journal on Software Tools for Technology
Lab: A Modular Statistical Model Checking Platform. Transfer, 24(4), 589-610. doi:10.1007/s10009-021-00633-
Leveraging Applications of Formal Methods, Verification Z.

and Validation: Foundational Techniques. ISoLA 2016.
Lecture Notes in Computer Science(), vol 9952. Springer,
Cham, Switzerland. doi:10.1007/978-3-319-47166-2_6.

[33] Stephens, M. A. (1974). EDF statistics for goodness of fit
and some comparisons. Journal of the American Statistical
Association, 69(347), 730-737.

[31] Safari, M. (2025). 'Experimental analysis, statistical doi:10.1080/01621459.1974.10480196.
modeling and optimization of the edge effects associated

40

