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Abstract: 

State explosion remains a fundamental challenge in model checking. Statistical model checking 
(SMC) offers a promising approach to mitigate this issue. Still, its application to Markov 

decision processes (MDPs) is hindered by the computational difficulty of resolving 
nondeterminism with near-optimal policies. Existing methods for policy selection within SMC 
often suffer from limited memory efficiency or fail to guarantee the specified confidence level 
for result accuracy. To address this, we introduce a novel statistical criterion for policy 
evaluation and propose an efficient method for determining an upper bound on the number of 
policies required to achieve a desired confidence level in the computed reachability 
probabilities. Our method leverages the mean and standard deviation of reachability 
probabilities obtained from a set of randomly sampled policies to derive this bound. 

Experimental results validate the effectiveness of our approach and demonstrate that it provides 
more reliable results in most cases. 
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1. Introduction 

Formal verification employs mathematically-driven 

methodologies to evaluate critical system properties in 

hardware and software. Among formal verification 

techniques, model checking automatically verifies whether 

a system model satisfies specified requirements [1, 2]. 

Systems are typically modeled as transition systems, 

whereas temporal logic formalisms specifybehavioral 

properties. Model checkers systematically examine system 

models to either validate compliance with requirements or 

generate counterexamples for violated properties. For 

stochastic systems, probabilistic extensions of transition 

systems, such as discrete-time Markov chains (DTMCs) and 

Markov decision processes (MDPs), are used. The 

Probabilistic Computational Tree Logic (PCTL) framework 

supports the specification of both qualitative and 

quantitative system characteristics. These analyses often 

focus on calculating reachability probabilities, defined as 

the probability of reaching a goal state from an initial state. 

In MDP analysis, determining extremal (minimum or 

maximum) probabilities becomes essential. Probabilistic 

model checking employs iterative graph-based algorithms 

and numerical methods to compute these metrics [3, 4].  

A well-known challenge of model checking across all 

variants is the state explosion problem, i.e., exponential 

growth in a model's state space with the number of system 

components. A vast number of solutions have beenproposed 

in the past three decades to alleviate this challenge. Most of 

them are also customized for stochastic systems [2, 3]. 

Statistical model checking (SMC) as a simulation-based 

approach with small (usually O(1)) space complexity has 

been proposed and extended in recent years [5]. It simulates 

a set of traces to verify a given property. For the case of 

quantitative properties, SMC is expected to approximate the 

needed values by a given level of statistical confidence [6]. 

Consideringa bound for tolerating errors in computed 

values and δ for the probability of false precision (abusing 

the desired bound of errors), SMC uses enough Monte Carlo 

simulations to guarantee that the computed value is precise 

with the proposed confidence interval (CI) [6-9]. 

For MDPs models, SMC needs to resolve non-

deterministic choices. In model checking of MDPs, the 

notion of a policy, defined as a mapping from states to 

actions, is a standard approach to resolving these choices [1, 

3]. For each policy, a Discrete time Markov chain (DTMC) 

is induced and the problem is reduced to analyzing the 

behavior of the induced DTMC. In exhaustive probabilistic 

model checking, iterative methods (like policy iteration [3]) 

are used to approximate the optimal policy that maximizes 

(or minimizes) a reachability probability. However, an 

explicit representation of policies must store the optimal 
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action for each state, which contradicts SMC'sO(1) space 

complexity. Several techniques have been proposed to 

approximate optimal policies for MDPs with SMC. These 

techniques primarily rely on considering a large set of 

policies or employing elimination techniques to identify a 

near-optimal policy [6, 10-14]. While these techniques yield 

promising results for some classes of case study models, 

they cannot be generalized to all classes of MDPs, and their 

main challenge is that they do not guarantee the precision of 

the computed value at the desired confidence level. An 

example of a complex case is the consensus (coin) MDP 

model, which represents a distributed agreement protocol in 

which processes repeatedly vote and flip coins to reach 

consensus. The objective is to maximize the probability of 

reaching a unanimous agreement within a deadline [15]. 

Finding the optimal policy is challenging due to state-space 

explosion: the model’s state space grows exponentially with 

the number of processes and rounds, and nondeterminism 

requires evaluating all possible schedulers that resolve 

process decisions at each step. Additionally, the 

probabilistic branching from coin flips multiplies 

computational complexity, making exact dynamic planning 

intractable for non-trivial instances. These factors 

collectively necessitate heuristic methods or 

approximations instead of exact solutions. 

Focusing on unbounded extremal reachability 

probabilities, this paper develops new techniques to address 

the aforementioned SMC problems for MDPS. The 

possibility of applying these techniques to the class of 

bounded reachability probabilities remains for future 

work.To do so, we define a criterion for optimality of a 

given policy. It is based on comparing the average of 

computed values for the given policy with the average of 

exact values. For a near-optimal policy, the first value 

converges to the second one. Based on this criterion, we 

provide a CI for the relative distance of computed values to 

their exact ones and we can analyze the precision of the 

current techniques for approximating optimal policies. We 

then develop a method to determine an upper bound for the 

minimum number of policies that should be examined to 

find a ”near-optimal” one, i.e., the one that is guaranteed to 

be in a confidence interval with the proposed for errors and 

1 − δ probability of confidence. To the best of our 

knowledge, no previous work has proposed such an upper 

bound for the number of needed policies. Our proposed 

method is based on the central limit theorem [16, 17]. 

1.1. Related Works 

The first work on resolving non-deterministic choices in 

MDPs is the Kearns sparse sampling algorithm for 

discounted Markov reward models [18]. It is based on 

unfolding a model to a limited depth to approximate the 

optimal action for each state. For reachability properties of 

MDPs, a SMC algorithm is presented by Henriques et al. 

[11] that determines near-optimal policies with a specified 

probability of satisfying the underlying LTL property. For 

the PCTL class of properties, a SMC algorithm is developed 

by Ashok et al. [19] that uses bounded real-time dynamic 

programming to approximate the optimal policy with a 

given level of precision. These two algorithms are 

implemented in the PRISM model checker. While both 

works employ machine learning to converge to optimal 

policies, their efficiency depends on the structure of the 

underlying MDP. Both approaches require storing selected 

actions for the explored states during simulations [7, 8]. In 

the worst case, their space complexity is O(n), which 

violates the memory-independence property of SMC 

methods. Hence, they are typically applicable to moderate-

sized models. Our proposed approach, however, requires a 

limited amount of memory regardless of model size and can 

be used with large models. On the fly algorithms are 

proposed in literature [7, 14, 20] that focus on the presented 

PCTL property to remove spurious non-deterministic 

choices of a model.Again, this class of techniques depends 

on the structure of the model and cannot resolve all non-

deterministic choices in any MDP. Compared with these 

techniques, our proposed technique is independent of the 

model structure and applies to all MDP cases. 

To address these challenges, policy sampling methods are 

proposed in literature [6, 8, 18] that use a four-bit integer 

and a pseudorandom number generator to generate a set of 

random memoryless policies. These methods (referred to as 

lightweight sampling methods for SMC) are based on 

considering a large set of random policies and 

approximating reachability probabilities by applying 

standard SMC to the induced DTMCs. They are developed 

as the plasma-lab model checker and can utilize multi-core 

processing to reduce runtime. These sampling methods rely 

on the assumption that with a high probability, a near-

optimal policy can be found in this set. Based on this 

assumption, they propose a method to determine the number 

of samples required to approach the optimal state values and 

to assess the satisfaction of the proposed PCTL property. 

However, this assumption is not always correct, and there is 

no guarantee of the soundness of the approximated values 

at a specified confidence level. The main benefit of our 

approach is that it provides an upperbound on the number 

of policy samples required to satisfy the conditions for 

aconfidence interval. In addition to studies by Henriques et 

al. [11], Budde et al. [13], and Ashok et al. [19], several 

recent works have proposed using machine learning (ML) 

methods to improve the performance of SMC sampling for 

MDPs. ML is used by Rataj and Woźna-Szcześniak [21] for 

extrapolating the optimal policy of a given large MDP 

model. Deep neural networks have been used by Gros et al. 

[22] as black box determiners for MDP choices. The 

precision of the computed values in these two works is 

evaluated using several experimental results, but no formal 

approximation for the soundness of their proposed results 

has been proposed. Although their space complexity is 

independent of model size, it is unclear how they can be 

applied to any given large model. Moreover, another 

challenge of ML-based methods is that they may converge 

to local optima, and there is no known way to avoid this in 

statistical model checking. Our approach considers a large 

set of policies and identifies at least one near-optimal policy 

that satisfies the given CI conditions. An extension of smart 

sampling for SMC of rare events in MDPs is proposed by 

Budde et al. [12]. It is developed as a mode-based model 

checker [23], relies on the same assumptions as Legay et al. 
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[8], and proposes confidence intervals for simulation 

precision.  

The SMC has been used in recent years to cover other 

classes of properties. A PAC statistical model-checking 

approach for mean-payoff games has been proposed by 

Agarwal et al. [24]. A PAC Learning Algorithm has been 

proposed by Perez et al. [25] for LTL and Omega-Regular 

Objectives over MDP models. Decision trees, as a class of 

machine learning techniques, are used by Azeem et al. [26] 

to yield more reliable results, whereas SMC is applied to 

MDP models.  

2. Preliminaries 

We review important concepts about Markov decision 

processes and statistical model checking. For a countable set 

𝑅 we use |𝑅| as its size, i.e., the number of its members. For 

a random variable 𝑧 we use 𝜙(𝑧) as its standard normal 

distribution.  

2.1. Markov Decision Processes 

Definition 1. A Markov Decision Process (MDP) is a 

tupleM = (S, 𝑠0, Act, P, G) where S is a finite set of states, 

𝑠0 ∈ 𝑆 is the initial state, Act is a finite set of actions where 

for every state 𝑠 ∈ 𝑆, 𝐴𝑐𝑡(𝑠) denotes the non-empty set of 

enabled actions for 𝑠; 𝑃: 𝑆 × 𝐴𝑐𝑡 × 𝑆 → [0,1] is the 

transition probability function such that for each state 𝑠 ∈ 𝑆 

and each enabled action 𝛼 ∈ 𝐴𝑐𝑡 we have: 
∑ 𝑃(𝑠, 𝛼, 𝑠′) ∈ {0,1}𝑠′∈𝑆 . 𝐺 ⊂ 𝑆 is a set of target states. In 

this definition, transition is a triple (𝑠, 𝛼, 𝑠′) for which𝑠, 𝑠′ ∈
𝑆 and 𝛼 ∈ 𝐴𝑐𝑡 and 𝑃(𝑠, 𝛼, 𝑠′) > 0. For any state 𝑠 ∈ 𝑆and 

an enabled action 𝛼 ∈ 𝐴𝑐𝑡(𝑠) we define 𝑃𝑜𝑠𝑡(𝑠) = {𝑡 ∈
𝑆|𝑃(𝑠, 𝛼, 𝑡) > 0} as the set of 𝛼 −successors of 𝑠. A path in 

an MDP, is a non-empty (finite or infinite) sequence of 

states and actions of the form 𝜔 = 𝑠0𝛼0 →  𝑠1𝛼1 →
 𝑠2𝛼2 →  … where 𝑃(𝑠𝑖 , 𝛼𝑖 , 𝑠𝑖+1) > 0 for each 𝑖 ≥ 0. We use 

𝜔(𝑖) to denote the (𝑖 + 1)𝑡ℎ state inthe path 𝜔. 𝑃𝑎𝑡ℎ𝑠 

denotes the set of all paths starting in state 𝑠 and 𝐹𝑃𝑎𝑡ℎ𝑠 is 

the set of all finite paths. A discrete-time Markov chain 

(DTMC) is an MDP in which every state has exactly one 

enabled action [1]. The successor state of each state of an 

MDP is determined in two steps. For any state 𝑠 ∈ 𝑆, the 

first step selects one of the enabled actions 𝐴𝑐𝑡(𝑠) non-

deterministically. The second step, selects the next state 

randomly using the probability distribution 𝑃(𝑠, 𝛼).  

In the probabilistic model checking, a set of properties are 

specified in PCTL or probabilistic LTL. In this paper, we 

focus on the extremal unbounded reachability probabilities, 

defined as the maximum or minimum probability of 

reaching a target state G [1, 3]. To analyze the probabilistic 

behaviour of an MDP M, the notion of policy (also called 

adversary or scheduler) is used to resolve its non-
deterministic choices. In this paper, we consider only 

deterministic, memoryless policies, which are sufficient for 

computing the extremal reachability probabilities [3, 27, 

28]. A (deterministic and memory-less) policy for M is a 

function 𝜋: 𝑆 → 𝐴𝑐𝑡 that for every state 𝑠 ∈ 𝑆 selects an 

action 𝛼 ∈ 𝐴𝑐𝑡(𝑠). We use 𝑃𝑜𝑙𝑀 for the set of all policies 

of 𝑀. Each policy 𝜋 ∈ 𝑃𝑜𝑙𝑀  induces a DTMC 𝑀𝜋 by 

disregarding non-selected actions. Verifying reachability 

probabilities for a given MDP is reduced to finding an 

optimal policy 𝜋∗ that optimizes reachability probabilities 

of all states. [1-3]. For unbounded reachability probabilities, 

memory-less policies are enough to compute the optimal 

values. For bounded reachability probabilities, however, 

memory-based policies are needed [3]. Iterative numerical 

methods, such as value iteration, policy iteration, and 
interval iteration [3, 4] are used in practice to approximate 

extremal reachability probabilities. For each state 𝑠𝑖 ∈ 𝑆 an 

iterative method uses a variable 𝑥𝑖 as an approximation of 

its maximal reachability probability. We use 𝑥𝑖
∗ as the 

computed (or approximated) optimal value for 𝑠𝑖 and define 

the mean of optimal values as 𝑀𝑂𝑉 =
1

𝑛
∑ 𝑥𝑖

∗
1≤𝑖≤𝑛 . We may 

use 𝑀𝑂𝑉𝑀 to denote 𝑀𝑂𝑉 for a given model 𝑀 if we have 

several models. Iterative methods for probabilistic model 

checking and their soundness are explained by Baier and 
Katoen [1], Baier et al. [2], and Hartmanns and Kaminski 

[4].  

2.2. Statistical Model Checking (SMC) 

Instead of applying exhaustive search on a given model, 

SMC generates a set of sample runs to simulate the 

behaviour of a model. The model checker verifies each run 

to determine whether it satisfies the given property or not. 

After simulation, the sample statistics are used to estimate 

the error rate at a specified confidence level, satisfying the 

given property [9, 12, 29]. To provide a guarantee for the 

precision of the approximated values, a statistical model 

checker should determine the number of simulation runs 

based on the given minimum error rate 𝜖 and confidence 

level 𝛿. Based on these parameters, a confidence interval 

(CI) is proposed for the correctness of the approximated 

values. The standard way in SMC for DTMC models is to 

determine M as the number of simulation runs such that 

𝑃𝑟(|𝑥𝑁
0 − 𝑥0| ≤ 𝜖) ≥ 1 − 𝛿 where 𝑥0

𝑁 is the 

approximated value for 𝑠0 after running N iterations. Most 

model checkers follow Hoeffding's Inequality as: 

𝑀 ≥  
𝑙𝑛(

2

𝛼
)

2𝜖2 . It is used when a model checker supports CI for 

verification of probabilistic systems [20, 27, 30]. In this 

paper we rely on CI for reachability probabilities of 

DTMCs, i.e., for any given MDP M, policy 𝜋 , thresholds 𝜖 

and 𝛿 for errors and confidence level, we follow the 

standard approaches to determine the number 𝑛 of required 

simulations to guarantee the precision of values at the 

desired level [7, 8, 12, 31, 32]. 

2.3. Central Limit Theorem 

The Central Limit Theorem (CLT) states that when 

independent random variables are summed or averaged, 

their distribution tends toward a normal distribution 

(Gaussian) as the sample size increases, regardless of the 

original population's distribution. Essential assumptions 

that need to apply CLT are as follows: 

1. Independence: Observations must be independent, e.g., 

random sampling with replacement or from an infinite 

population. 

2. Finite Mean and Variance: The population must have a 

finite mean (μ) and finite variance (σ2≠∞). 
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3. Sample Size (n) must be sufficiently large (n > 50 in 

most cases). 

3. The Proposed Method for an Upper Bound 
for the Number of Policy Samples 

A main drawback of the smart sampling method and its 

extensions for SMC of MDPs is that their computational 

precision relies on the likelihood of finding a near-optimal 

policy among a set of randomly selected policies [12]. There 

are MDP models for which a main part of non-deterministic 

choices are spurious, or the impact of choosing an optimal 

action over the other ones is negligible for most states [7, 

30]. In such cases, smart sampling can find a near-optimal 

policy with high probability. However, there are cases for 

which the number of policies increases exponentially in the 

number of states, while infinitely small parts of them are 

near-optimal. 

Example 1 .Consider the MDP of Figure 1 with 𝑛 states 

where 𝑠𝑛  is the goal state and 𝑠𝑛−1 a trap state and any other 

state have two actions. There are 2𝑛−2 policies for this MDP, 

of which only one is optimal. For any policy with 𝑘 non-

optimal actions, the probability of reaching the goal from 𝑠0 

is 
1

2𝑘 . Consider a case in which we need to find a policy that 

is at least 50% near-optimal, meaning that at most one non-

optimal action is acceptable. There are 𝑛 −  1 policies from 

2𝑛−2ones that satisfy this condition. As a result, with a 

probability of 
𝑛−1

2𝑛 , A randomly selected policy is at least 

50% optimal. For n = 50, this probability is 
49

248 = 1.7𝐸 −

13 that means with a probability of 1 − 1.74𝐸 − 13. A 

randomly selected policy is less than 50% optimal. Having 

m different randomly selected policies, the probability of 

50% near-optimality is 1 − (1 − 1.74𝐸 − 13)𝑚. For this 

example, one should consider 
𝑙𝑜𝑔 (0.1)

𝑙𝑜𝑔 (1−1.74𝐸−13)
= 1.32𝐸 +

13 policies to be 90% confident to have at least one 50% 

near-optimal policy. 

 

Figure 1. An MDP example with 𝟐𝒏−𝟐 Possible Policies 

3.1. Policy Evaluation 

To assess how well a policy approximates reachability 

probabilities and how well it can be used in SMC, we define 

a criterion for policy optimality. For each state 𝑠𝑖 ∈ 𝑆 we 

use 𝑥𝑖
∗ for its extremal probability of reaching a target state. 

For a policy 𝜋 we use 𝑥𝑖
𝜋 for the probability of reaching a 

target state under 𝜋. We use 𝐴𝑏𝑠_𝑒𝑟𝑟(𝑥𝑖
𝜋) and 𝑅𝑒𝑙_𝑒𝑟𝑟(𝑥𝑖

𝜋) 

for the absolute and relative errors in the computed 

reachability values under 𝜋: 𝐴𝑏𝑠_𝑒𝑟𝑟(𝜋) = |𝑥𝑖
∗ − 𝑥𝑖

𝜋| and 

𝑅𝑒𝑙_𝑒𝑟𝑟 =
|𝑥𝑖

∗−𝑥𝑖
𝜋|

𝑚𝑎𝑥 {𝑥𝑖
∗,𝑥𝑖

𝜋}
. In this section, we define a criterion 

for the fitness of a given policy by comparing the computed 

reachability probabilities of its induced DTMC with their 

exact values. A standard criterion for computation errors is 

the mean square error of computed values [28]. However, 

due to technical constraints, we consider mean errors. 

Definition 1. (Mean absolute and mean relative errors) For 

an MDP 𝑀 and a given policy 𝜋we use 𝑀𝐴𝐸(𝜋) and 

𝑀𝑅𝐸(𝜋) for mean absolute errors and mean relative errors 

of computed reachability probabilities under 𝜋 and define 

them as: 

𝑀𝐴𝐸(𝜋) =
1

𝑛
∑ 𝐴𝑏𝑠_𝑒𝑟𝑟(𝑥𝑖

𝜋)𝑛
𝑖=1 =

1

𝑛
∑ |𝑥𝑖

𝜋 − 𝑥𝑖
∗|𝑛

𝑖=1   (1) 

and 

𝑀𝑅𝐸(𝜋) =
1

𝑛
∑ 𝑅𝑒𝑙_𝑒𝑟𝑟(𝑥𝑖

𝜋)𝑛
𝑖=1 =

1

𝑛
∑

|𝑥𝑖
𝜋−𝑥𝑖

∗|

𝑚𝑎𝑥 {𝑥𝑖
𝜋,𝑥𝑖

∗}

𝑛
𝑖=1   (2) 

For maximal reachability probabilities 𝑥𝑖
∗ ≥ 𝑥𝑖

𝜋 holds for 

each 𝑠𝑖 ∈ 𝑆. In this case, for Equation 1 we have 𝑀𝐴𝐸(𝜋) =

 
1

𝑛
∑ 𝑥𝑖

∗𝑛
𝑖=1 −

1

𝑛
∑ 𝑥𝑖

𝜋𝑛
𝑖=1 . On the other hand, for minimal 

reachability probabilities 𝑥𝑖
∗ ≤ 𝑥𝑖

𝜋  holds for each state and 

we have 𝑀𝐴𝐸(𝜋) =
1

𝑛
∑ 𝑥𝑖

𝜋𝑛
𝑖=1 −

1

𝑛
∑ 𝑥𝑖

∗𝑛
𝑖=1 . Similar cases 

hold for mean average errors. For maximal reachability 

probabilities 𝑀𝑅𝐸(𝜋) =
1

𝑛
∑

𝑥𝑖
∗−𝑥𝑖

𝜋

𝑥𝑖
∗𝑥𝑖

∗≠0  and minimal 

reachability probabilities 𝑀𝑅𝐸(𝜋) =
1

𝑛
∑

𝑥𝑖
𝜋−𝑥𝑖

∗

𝑥𝑖
𝜋𝑥𝑖

∗≠0 .  

Mean relative error provides a more precise estimate of the 

likelihood of policy optimality. However, this method 

requires knowing the exact values xi, which are not always 

available. Instead, mean absolute error (MAV) can be 

computed using the mean of exact values (MOV). MOV can 

be approximated without precisely estimating each 𝑥𝑖 . In 

the next section, we propose an approach for approximating 

MOV. The ability to approximate MOV for MAV 

computation is the primary reason for using mean absolute 

error in Equation1 instead of mean squared error. 

Using different random policies 𝜋, one can consider 𝑥𝑖
𝜋 as 

a random variable. In SMC, we are interested in controlling 

the precision of the approximated value for 𝑠0. In general, 

there is not any assumption about the probability 

distribution of 𝑥𝑖
𝜋 over a set of random policies [16]. For 

SMC of MDPs, we focus on Equations 1 and 2 to control 

the precision of the approximated value in the induced 

DTMCs. In general, for a random policy 𝜋 with 𝑀𝑅𝐸(𝜋) =
𝛿 we expect 𝑅𝑒𝑙_𝑒𝑟𝑟(𝑥0

𝜋) to be around 𝛿 unless we have 

some more information about the probability distribution of 

(𝑥0
𝜋). In the case of lack of knowledge about this 

distribution, we use the following lemma to relate 

𝑅𝑒𝑙𝑙_𝑒𝑟𝑟(𝑥0
𝜋) to 𝑀𝑅𝐸(𝜋). In the remainder of this paper, 

we rely on this lemma and focus on 𝑀𝑅𝐸(𝜋). 

Lemma 1. For a given policy 𝜋 ∈ 𝑃𝑂𝐿𝑀 let 𝑀𝑅𝐸(𝜋) = 𝛿. 

For an error rate 𝜖 and any state 𝑠𝑖 ∈ 𝑆, in the worst case 

(over all possible policies) we have: 

𝑃𝑟 (𝑅𝑒𝑙𝑙_𝑒𝑟𝑟(𝑥𝑖
𝜋) ≥ 𝜖) =

𝛿

𝜖
  (3) 
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which means with probability 1 −
𝛿

𝜖
, for any state 𝑠𝑖 we have 

𝑥𝑖
𝜋 within ∓𝜖 of 𝑥𝑖. 

Proof: Suppose in the worst case the probability that 

𝑅𝑒𝑙_𝑒𝑟𝑟(𝑥𝑖
𝜋) ≥ 𝜖 is 𝛽. The worst case happens when for 

100 × 𝛽 percent of states 𝑠 ∈ 𝑆, 𝑅𝑒𝑙_𝑒𝑟𝑟(𝑥𝜋) is equal to 𝜖 

and for the other states 𝑅𝑒𝑙_𝑒𝑟𝑟(𝑥𝜋) is equal to 0. On the 

other side, the average of this value should be 𝛿, which 

means 𝜖 × 𝛽 + 0 × (1 − 𝛽) = 𝛿. As a result, we have 𝛽 =
𝛿

𝜖
.  

Example 2. Consider for a selected policy 𝜋 we have 

𝑀𝑅𝐸(𝜋)  =  0.01 and let 𝜖 = .1 as the maximum error rate. 

Using lemma 1 we have 𝑃𝑟(𝑅𝑒𝑙_𝑒𝑟𝑟(𝑥0
𝜋) ≥ 0.1)  ≤ 0.1 

that means with the probability of .9 (as confidence level) 

the relative error of the computed value for the initial state 

is 0.1. Note that we may conclude more precise CI if we 

have some information about probability distribution of 𝑥0
𝜋 

over different policies 𝜋. Note that lemma 1 also holds if 

one considers absolute errors, i.e., using 𝑀𝐴𝐸(𝜋) and 

𝐴𝑏𝑠_𝑒𝑟𝑟(𝑥𝑖
𝜋) in the lemma. Having 𝜖 and 𝛿 as the CI 

parameters, one can use Lemma 1 to compute the required 

precision of the total computed values. 

3.2. Upper-bound for Number of Policies 

A key step in SMC is evaluating the precision of the 

approximation. For MDPs, it should also assess the 

precision of the selected policies and determine how many 

policies are needed to obtain a near-optimal policy that 

satisfies the conditions of the proposed confidence interval. 

Considering 𝑅𝑎𝑛𝑑_𝑃𝑜𝑙𝑠 as a set of randomly selected 

deterministic policies, we develop a method to compute an 

upper boundfor the size of 𝑅𝑎𝑛𝑑_𝑃𝑜𝑙𝑠 to have at least one 

near-optimal policy,i.e., for a given probability 𝛿 of 

confidence and an error bound 𝜖 and for the best policy 

𝜋𝑏𝑒𝑠𝑡of 𝑅𝑎𝑛𝑑_𝑃𝑜𝑙𝑠 we have 𝑃𝑟 (𝑀𝑅𝐸(𝜋𝑏𝑒𝑠𝑡) ≥ 𝜖). To the 

best of our knowledge, no previous work has proposed such 

a bound on the number of random policies for satisfying the 

conditions of precision except some memory-dependent 

works [11, 19]. Note that the smart sampling method [6] 

compares the true probability of the best candidate policy 

found with the estimated probability of the best candidate 

policy by considering a sample set of policies.  

Using 𝑃𝑜𝑙𝑀 as the set of all possible random policies of the 

given MDP 𝑀, one can consider 𝑀𝑅𝐸 as a random variable 

over this set of policies. Having the probability distribution 

of this random variable, it is possible to determine the 

number of policies that satisfy the conditions of CI. In 

general, the structure of a model affects this probability 

distribution. For a large model with a huge number of states, 

we expect that with a high probability, for each pair of states 

(𝑠𝑖 , 𝑠𝑗). The impact of their value on one another is 

negligible. As a result, we can use the central limit theorem 

(CLT) and consider a normal distribution for 𝑀𝑅𝐸. More 

precisely, the second and third assumptions for CLT (as 

proposed in 2.3) hold for large MDP models: the state space 

is large enough and both the mean and variance of values 

are always finite because each state value is less than or 

equal to 1. For the first assumption, if there are a limited 

number of Dirac transitions, we expect that the value of each 

state depends on the values of a small subset of states, and, 

with high probability, the values of any two states are 

independent. The normal distribution is also used as default 

in modest for the mean of state values [16]. Although in 

general, considering normal distribution for 𝑀𝑅𝐸 may not 

be correct, our experiments show that it holds for most case 

studies. Considering a normal distribution for 𝑀𝑅𝐸 (or 

𝑀𝐴𝐸), we apply the following lemma to compute an upper 

bound for the number of policies to find a near-optimal one.  

Lemma 2. Suppose MRE is a random variable with normal 

distribution with 𝜇 and 𝜎 as its mean and standard deviation. 

Let 𝑁 =  |𝑅𝑎𝑛𝑑_𝑃𝑜𝑙𝑠| be the size of a sample set of 

policies. For a given probability 𝛿 and error bound 𝜖, there 

exists a policy 𝜋𝑏𝑒𝑠𝑡 ∈ 𝑅𝑎𝑛𝑑_𝑃𝑜𝑙𝑠 where 

𝑃𝑟(𝑀𝑅𝐸(𝜋𝑏𝑒𝑠𝑡) ≥ 𝜖) ≤ 𝛿 if: 

𝑁 ≥ [
𝑙𝑜𝑔 (𝛿)

𝑙𝑜𝑔 (1−𝛷(
𝜖−𝜇

𝛿
))

]  (4) 

Proof. Based on the assumptions, for a random policy 𝜋 ∈
𝑃𝑜𝑙𝑀 the probability that its 𝑀𝑅𝐸 is less than 𝜖 is computed 

as: 

𝑃𝑅(𝑀𝑅𝐸(𝜋) < 𝜖) = 𝑃𝑟 (
𝑀𝑅𝐸(𝜋)−𝜇

𝜎
<

𝜖−𝜇

𝜎
)  = 𝛷(

𝜖−𝜇

𝜎
)  (5) 

As a result, 𝑃𝑟(𝑀𝑅𝐸(𝜋) ≥ 𝜖) = 1 − 𝛷(
𝜖−𝜇

𝜎
). As for any 

two policies 𝜋1, 𝜋2 the reachability probability of state in 

the induced DTMCs are independent, we consider 

𝑀𝑅𝐸(𝜋1) and 𝑀𝑅𝐸(𝜋2) as two independent events. Hence, 

for a 𝑅𝑎𝑛𝑑_𝑃𝑜𝑙𝑠 set with 𝑁 policies, the probability that for 

all policies 𝜋 ∈ 𝑅𝑎𝑛𝑑_𝑃𝑜𝑙𝑠 we have 𝑃𝑟(𝑀𝑅𝐸(𝜋) ≥ 𝜖) =

(1 − 𝛷 (
𝜖−𝜇

𝜎
))

𝑁

. To satisfy the conditions of the lemma, we 

should find the first 𝑁 for which (1 − 𝛷 (
𝜖−𝜇

𝜎
))

𝑁

≤ 𝛿 holds 

that means 𝑁 ≥ [
𝑙𝑜𝑔 (𝛿)

𝑙𝑜𝑔 (1−𝛷(
𝜖−𝜇

𝜎
))

]. 

We can use MAE instead of MRE in this lemma and have 

the same results. As a result, Lemma 2 can be used as a 

statistical criterion to estimate the upper bound for the 
number of random policies to find a near optimal one with 

the provided level of confidence. Having the values of 𝛿 and 

𝜖 as the parameters of CI and considering 𝜇 and 𝜎 as the 

mean and standard deviation for a set of random policies, 

we can determine the required upper bound as 

[
𝑙𝑜𝑔 (𝛿)

𝑙𝑜𝑔 (1−𝛷(
𝜖−𝜇

𝜎
))

]. 

Notice that for applying SMC for MDP models and for a 

given confidence level 1 − 𝛿 and margin error 𝜖 as the 

conditions of CI, we should consider two steps to satisfy 

these conditions: the first step should select a sample of 

policies based on the given parameters, and the second step 

should run sufficient simulations to approximate the 

required reachability probabilities. However, these steps are 

independent and each has its own error  rate. Hence, we 

need to consider two error rates 𝜖1 and 𝜖2 such that they 

satisfy the overall conditions of CI. In this paper, we 

consider 𝜖1 = 𝜖2 =
𝜖

2
 to determine the values of N and M as 

the number of policies and simulation runs. 
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Example 3. We propose the PRISM program for a small 

MDP with 8 states, as shown in Figure 2. The first 6 states 

of this MDP have exactly two actions. The last state (where 

s = 8) is a goal state, and its predecessor is a dead state that 

cannot reach any other state. 

 

Figure 2. The PRISM program of an MDP model with 8 

states 

For this small example, we consider all 26 = 64 possible 

policies and compute MRE and MAE values for each 

policy, using the optimal values of each state. To do so, for 
each policy, we consider the induced DTMC, and for each 

of the 6 states (excluding the goal and dead states), we run 

1000 simulations to approximate the probability of reaching 

the goal state from that state. The results for the first 20 

policies are proposed in Figure 3. In this MDP model, for 

MAE we have 𝜇 = .204 and 𝜎 = .073 and for MRE we 

have𝜇 = .29 and 𝜎 = .105. For these values and 

considering 𝛿 = .05 and 𝜖 = .02 as the parameter values for 

CI, we can use Lemma 2 and compute an upper bound for 

the number of policies as 𝑁 >
𝑙𝑜𝑔(.05)

𝑙𝑜𝑔(1−𝛷(
.02−.29

.105
))

= 597.64. 

Hence, to satisfy the CI conditions and given the specified 

meanand standard deviation of MAE, we need to consider 

at least 598 policies. 

 

Figure 3. The computed MAE and MRE for the first 20 

policies for MDP model of Example 2 

Although Lemma 2 proposes a straightforward method to 

compute an upper bound for the number of random policies 

to find a near optimal one for SMC, several challenges exist 

for applying it for large MDP model: 

- It supposes that the distribution of MRE (or MAE) is 

normal. Otherwise, the proposed upper-bound is not 

reliable. This condition is verifiable by using some 

standard tests (Kolmogorov-Smirnov test [33] for 

example) for probability distributions. 

- It is not easy to compute the exact values for 𝜇 and 𝜎 

(called true standard deviation in this section). Using a 

random sample of policies, one can estimate these 

quantities with a specified confidence level. These errors 

in approximating 𝜇 and 𝜎 should be considered in Lemma 

2 to have a more conservative upper bound. 

- Computing 𝑀𝐴𝐸 and 𝑀𝑅𝐸 relies on having exact values 

of 𝑥𝑖 for each state 𝑠𝑖 ∈ 𝑆. For feasible models, an 

exhaustive model checker (e.g., PRISM) can apply the 

interval iteration method to compute these values with the 

desired precision. For such models, this lemma serves as 

a benchmark for assessing the feasibility of using SMC. 

For large models that expose the state explosion problem, 

one can rely on 𝑀𝐴𝐸 by using an approximation of 𝑀𝑂𝑉. 

In the worst case, we consider 𝑥𝑖  =  1 for all states in the 

maximal and 𝑥𝑖  =  0 for all states in the minimal 

reachability probabilities. Although this approximation 

may be far from exact values, it provides a sound 

upperbound on the number of policies. In the next section, 

we propose a more realistic solution for this challenge. 

- In the case of state explosion, it is not possible to compute 

𝑥𝑖
𝜋 for all states 𝑠𝑖 ∈ 𝑆. Instead, we consider a sample set 

𝑆𝑠𝑎𝑚𝑝𝑙 ⊂ 𝑆 of 𝑚 states and for a given policy 𝜋 ∈ 𝑃𝑜𝑙𝑀  

our method uses  
1

𝑚
∑ 𝑥𝑖

𝜋
𝑠𝑖∈𝑆𝑠𝑎𝑚𝑝𝑙𝑒𝑠

 as an approximation 

for 𝑀𝑂𝑉. To approximate each 𝑥𝑖
𝜋 it applies SMC on the 

induced DTMC. In this approach, it is better to consider 

MAE if 
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 can be approximated in some ways. This 

solution introduces two new problems in the precision of 

computations: First, the standard deviation of computed 

values for the states of 𝑆𝑠𝑎𝑚𝑝𝑙𝑒𝑠 may be far from the true 

standard deviation of 𝑀𝑅𝐸 (or 𝑀𝐴𝐸). Increasing the size 

of 𝑆𝑠𝑎𝑚𝑝𝑙𝑒𝑠 may reduce this error. Unfortunately, there is 

not any simple method to determine an appropriate size 

for the sample set 𝑆𝑠𝑎𝑚𝑝𝑙𝑒𝑠 . Our experiments show that 

this standard deviation is at most two times larger than the 

true standard deviation if we use 𝑚 = 1000. Second, 

using SMC for approximating reachability probabilities 

of states of 𝑆𝑠𝑎𝑚𝑝𝑙𝑒𝑠  introduces some errors in the 

computed standard deviation. Our solution to 

approximate the true standard deviation is to increase the 

number of simulations. Based on the proposed parameters 

𝜖 and 𝛿 of lemma 2 and the approximated standard 

deviation of the state-values of 𝑆𝑠𝑎𝑚𝑝𝑙𝑒𝑠, one can 

determine a bound for errors of SMC on the induced 

DTMC and propose an upper bound for the number of 

simulations for each state of 𝑆𝑠𝑎𝑚𝑝𝑙𝑒𝑠. Although our 

solutions to these two challenges burden some overhead, 

it is possible to apply a multi-processor to accelerate these 

computations. In addition, some improved methods for 

SMC of DTMCs are available and can be used to enhance 

these two solutions [16]. 

- In normal distribution, a random variable can have any 

value in [−∞, +∞]. However, we have 0 ≤  𝑀𝑅𝐸 ≤  1. 
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For the sake of simplicity, one can disregard the cases 

where in normal distribution𝑀𝑅𝐸 >  1 or 𝑀𝑅𝐸 <  0. 

Otherwise, it is possible to consider truncated normal 

distribution and extend the results of this section to this 

distribution. 

In this section, we propose a method for computing an 

upper bound on the number of randomly selected policies 

required to achieve the desired precision in SMC for 

reachability probabilities in MDPs. We reviewed the 

challenges of using Lemma 2 and proposed solutions. This 

method can be applied to any set of policies that induces a 

normal distribution of MRE and MAE values. Otherwise, 

given a hypothesis about the probability distribution of 

these random variables, some modifications are required to 

apply Lemma 2. 

In general, the time complexity of our proposed technique 

for determining an upper bound on the number of policy 

samples is independent of the size of the MDP models. It 

mainly depends on the number of policies for statistical 

analysis and also on 𝜖 and 𝛿 as the parameters of confidence 

interval. Considering a constant memory consumption for 

representing each policy, the space complexity of our 

approach is in 𝑂(1).  

4. Experimental Results 

To evaluate our proposed approaches, we consider six 

case-study classes from the PRISM and STORM 

benchmarks [27, 33]. Brief information on these case 

studies, including their names, parameter values, numbers 

of states, actions, and transitions, is presented in Table 1. We 

use PRISM 4.6, the most recent available version, to 

implement these approaches. The results of our experiments 

are proposed in Table 2. In this table, we present the 

approximate mean and standard deviation of MRE and 

MAE, as defined in Equations1 and2. Depending on the 

running times, we consider between 100 and 500 samples 

for these approximations. We use the standard value-

iteration method [1] to compute state reachability 

probabilities. We apply lemma 2 by setting 𝛿 = 0.01 and 

𝜖 = 0.01to compute an upper bound for N as the size of a 

sample set of policies. The upper bounds can be evaluated 

in practice by applying Lemma 2 and using the computed 

parameter values. These upper bounds can be more precise 

if one can compute exact state values in advance. To do so, 

we use the interval iteration method in PRISM to compute 

precise values of states. The results of Table 2 demonstrate 

that the computed upper bounds are so huge that it is not 

easy to verify them directly. However, they primarily rely 

on Lemma 2 and are applicable when state values are largely 

independent.

Table 1. Information of the selected MDP models 

Model 
Parameter 

value 
|S| |Act| |Trans| 

Coin3 K=20 25184 52224 65220 

Coin4 K=20 206976 558208 697312 

Firewrite ddl=1500 853408 1074328 1177444 

Firewrite (ddl=4000) ddl=4000 2493408 3146828 3444944 

Mer n=2000 11815564 45370339 46540354 

Mer n=4000 23629564 90734339 93074354 

Zeroconf K=10 3001911 5520579 6787615 

Zeroconf K=18 5477150 10095684 12374708 

Wlan3 TTM=2500 1082342 2125690 2206536 

Wlan3 TTM=4500 1874342 3733690 3814536 

Wlan tb3 (TTM=10) deadline=100 4767507 6160793 10160675 

Wlan tb3 (TTM=10) deadline=150 8941451 11504363 19164337 

Table 2. Computed Upper-bound for the number of policies 

Model MRE MAE 

(parameter) 𝜇 𝜎 N 𝜇 𝜎 N 

Coin3(K=20) 0.285 .02 1e+31 0.024 1.45e-3 4e+22 

Coin4(K=20) 0.20 4.98e-3 3e+38 0.020 5.98e-4 3e+31 

Firewrite (ddl=1500) 0.423 5.45e-4 2e+787 0.427 5.57e-4 7e+748 

Firewrite (ddl=4000) 0.20 1.7e-4 8e+1117 0.02 1.74e-4 2e+58 

Mer(n=2000) 0.806 8.02e-3 3e+99 0.139 1.91e-4 5e+676 

Mer(n=4000) 0.806 1.58e-4 6e+5037 0.139 1.58e-4 1e+816 

Zeroconf(K=10) 0.938 6.34e-3 8e+146 0.49 1.7e-3 9e+282 

Zeroconf(K=18) 0.969 7.18e-3 1e+133 0.573 1.18e-3 4e+477 

Wlan3 (TTM=2500) 0.363 9.43e-2 5750 8.7E-3 1.6e-3 9 

Wlan3 (TTM=4500) 0.374 0.108 1375 8.84E-3 1.76e-3 8 

Wlan tb3 (dl=100) 0.765 3.14e-4 6e+2404 0.165 8.72e-4 6e+177 
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Wlan tb3 (dl=150) 0.55 3.97e-4 9e+1360 0.137 8.3e-4 8e+153 

In most cases, the approximated sigma values are so small 

that the proposed upper bound on the number of policies 

exceeds 1e+30. The only exception is the WLAN case 

studies, where this upper bound is small, showing that LSS 

can approximate reachability probabilities for these models 

with the desired level of confidence. Although these results 

are disappointing in some cases and the provided 

upperbounds are so large that they are not useful in practice, 

they show that more advanced techniques (such as machine 

learning methods) are needed to guide SMC toward faster 

convergence to optimal values. 

We use the smart sampling method supported by the 

Plasmalab model checker as the baseline and compare the 

precision of the computed values with that of our method. 

To do so, we consider our method while setting𝛿 = 0.01 

and 𝜖 = 0.01 as the parameters for CI and the default 

parameters for Plasmalab model checker. We report 

absolute errors for the results of running smart sampling 

over case studies in Table 3. While we expect small errors 

with high confidence, the reported errors are high in several 

cases where the smart sampling method is applied.

Table 3. Absolute errors of running smart sampling as baseline 

Model Parameter value Absolute error 

Coin3 K=20 0.134 

Coin4 K=20 0.087 

Firewrite ddl=1500 0.453 

Firewrite (ddl=4000) ddl=4000 0.521 

Mer n=2000 0.032 

Mer n=4000 0.046 

Zeroconf K=10 0 

Zeroconf K=18 0 

Wlan3 TTM=2500 0.012 

Wlan3 TTM=4500 0.024 

Wlan tb3 delay=100 0.174 

Wlan tb3 delay=150 0.218 

5. Conclusion and Future Works 

In this paper, we propose an approach to determine an 

upper bound on the number of policies required to guarantee 

that the conditions of a given CI are satisfied when applying 

SMC to verify the unbounded reachability probabilities of 

MDPs. Some challenges remain for future work. 

Specifically, it is important to investigate how the structure 

of an MDP model can affect the applicability of the central 

limit theorem to our proposed techniques. Another 

important research direction is to develop efficient machine 

learning techniques with low space complexity to predict 

near-optimal policies for large models. These techniques 

can use neural networks or random forests to prioritize 

actions, thereby accelerating convergence to optimal 

policies. Using such techniques in our approach can yield a 

higher mean value and reduce the number of policies 

required to satisfy the CI conditions. 
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