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Abstract: 

Automated fake-news detection is a critical challenge for preserving the integrity of the online 

information ecosystem. Current state-of-the-art systems increasingly depend on external context, 

such as social propagation graphs, which fundamentally limits their applicability in real-time or 

“cold-start” scenarios where such signals are unavailable. We challenge the prevailing 

assumption that this external context is indispensable for top-tier performance. Instead, we argue 

that the primary bottleneck is the brittle and poorly structured content representations learned via 

standard model fine-tuning. To address this, we propose a synergistic training framework that 

sculpts a more robust and discriminative embedding space. Our method harmonizes two 

complementary and powerful techniques: (1) supervised contrastive regularization, which 

explicitly structures the feature space by enforcing tight intra-class clustering and clear inter-class 

separation, and (2) embedding-space mixup, a regularization strategy that creates smoother, more 

generalizable decision boundaries. On two widely used public benchmarks, Twitter15 and 

Twitter16, our purely content-only framework establishes a new state-of-the-art, achieving 

Weighted F1-scores of 94.2% and 94.7%, respectively, and significantly outperforms not only 

other text-based models but also leading context-aware methods. Our results demonstrate that, 

with a sufficiently rigorous training regimen, the intrinsic signals within text alone can drive 

superior veracity assessment. 
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1. Introduction 

The proliferation of “fake news”, ranging from subtle 

misinformation to overt propaganda, steadily erodes public 

trust and endangers societal well-being [1, 2]. Automated 

detection is imperative, yet current approaches remain 

constrained. Context-based models, which leverage social 

diffusion patterns or user metadata [3], excel when rich 

historical data is available; however, they fail in “cold-start” 

settings where such signals are absent. Similarly, 

knowledge-based systems that verify claims against 

external repositories [4] often lag behind in breaking news 

or hyper-local events that have not yet been captured in their 

databases. 

This leaves content-only methods as the most immediately 

deployable paradigm, but they are often dismissed as 

inherently weaker. We argue that this perceived weakness 

arises not from a fundamental lack of veracity signals within 

the text, but rather from brittle representations learned 

through standard fine-tuning, where minor paraphrases or 

stylistic adjustments can easily mislead a model [5]. We 

hypothesize that, with the proper training regimen, the 

intrinsic signals within text alone are sufficient for state-of-

the-art veracity assessment. 

To test this hypothesis, we introduce a synergistic training 

framework that sculpts a resilient embedding space from 

text by uniting two complementary techniques: (1) 

supervised contrastive regularization to systematically 

structure the feature space by clustering same-class 

examples, and (2) embedding-space mixup to regularize the 

model and learn smoother, more generalizable decision 

boundaries. 

On two standard public benchmarks (Twitter15 and 

Twitter16), our framework establishes a new state-of-the-art 

for content-only models. Critically, it consistently 

outperforms even leading context-aware systems that rely 

on external social graph information, demonstrating the 

profound impact of a superior content representation. 

Our contributions are threefold: 

https://cste.journals.umz.ac.ir/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
https://foreign.umz.ac.ir/
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1. A Novel Training Framework: We propose and evaluate 

the first cohesive integration of supervised contrastive 

loss and embedding-space mixup specifically for the task 

of misinformation detection. 

2. Revisiting the Role of Context: We provide strong 

empirical evidence that a content-only model, when 

trained with a robust representation learning objective, 

can surpass complex, context-dependent models. 

3. Demonstrating Synergy: Through a detailed ablation 

study, we show that the combination of contrastive 

learning and mixup yields significant performance gains 

beyond what either component can achieve alone, 

proving their synergistic effect. 

2. Related Work 

The automated detection of misinformation is a vast, 

complex, and rapidly evolving field, as evidenced by 

several recent comprehensive reviews [6–8]. Research 

efforts can be broadly categorized into three dominant 

research paradigms: context-based, knowledge-based, and 

content-based approaches. This section situates our 

proposed framework within this landscape, arguing that by 

addressing fundamental limitations in content 

representation, our method establishes a new and more 

robust foundation for the field. A summary of the key 

approaches and their limitations is presented in Table 1. 

2.1. Context-Aware Methods 

A significant body of work is predicated on the premise 

that a claim's veracity is best determined not by its content 

alone, but by the external signals related to its origin and 

propagation. 

Social Context Models: This paradigm treats 

misinformation as a socio-technical phenomenon, analyzing 

its spread through a network graph. Foundational 

approaches model the propagation structure of news 

cascades, using Graph Neural Networks (GNNs) to learn the 

distinct tree-like patterns of how fake and real news 

diffuse [9, 10]. More recent work has advanced this frontier 

by utilizing structural contrastive learning on propagation 

trees, thereby eliminating the need for labeled data [3]. The 

SiMiD model [11] operationalized this by using contrastive 

learning to separate posts based on their community of 

origin, while models like DANES [12] build ensemble 

architectures with dedicated social context branches. The 

primary limitation of these models is their heavy reliance on 

rich, explicit graph data, which is often unavailable or 

absent entirely at a post's inception, creating a critical "cold 

start" problem.  

To illustrate, consider a breaking news event, such as an 

unconfirmed report of an explosion. A malicious actor posts 

a tweet with a false claim: "Explosion at City Hall 

confirmed as a terrorist attack." At the moment of its 

creation (t=0), this post has neither a propagation tree nor 

user engagement. Consequently, propagation-based models 

(e.g., Bi-GCN) cannot render a verdict because no diffusion 

pattern has yet emerged. Similarly, community-based 

models like SiMiD are also ineffective, as the post has not 

yet been adopted or amplified by any identifiable 

community. It is precisely in these first critical minutes and 

hours that the falsehood spreads most rapidly, often 

reaching thousands of users before any contextual signals 

have accumulated. This limitation has significant 

implications for the design of real-world information 

systems [13], as it means context-based models cannot 

provide immediate verdicts. 

Table 1. Misinformation detection paradigms and SCU’s advantages over each other 

Category Core Idea Representative Works SCU’s Advantage 

Social Context 
Models propagation graphs and user 

interactions 

SiMiD [11], SCL [3], DANES 

[12] 

No reliance on external graph data; works at 

"cold start". 

Factual Context 
Verifies claims against external 
knowledge graphs 

HGNNR4FD [4], [14] 
Unaffected by KG gaps or staleness; purely 
content-driven. 

Multimodal Content 
Fuses or aligns textual and visual 

information 

MCOT [15], CLAAF [16], 

LogicDM [17] 

Builds stronger text features, which can benefit 

any modality. 

Text-Only Content 
Uses deep linguistic or psychological 

cues 
H-GIN [18, 19] 

Replaces brittle fine-tuning with a robust 

embedding regimen. 

Proposed Approach 
(SCU) 

Synergistic SupCon + Embedding 
Mixup 

This study 
Learns a highly discriminative and generalizable 
text feature space. 

This approach performs factual verification by validating 

claims within news content against an external Knowledge 

Graph (KG). State-of-the-art methods construct 

heterogeneous graphs linking claims to KG entities, 

enabling automated cross-document reasoning [14, 20]. For 

instance, HGNNR4FD [4] uses a GNN to reason over this 

combined graph to detect inconsistencies. While powerful, 

these models are bottlenecked by the completeness and 

timeliness of their KGs, struggling to break news or handle 

claims involving novel entities. 

2.2. Content-Based Methods 

To overcome the dependency on external signals, content-

based methods analyze the intrinsic properties of the 

message. This research family is diverse, with recent 

advances pushing beyond simple text classification. 

Sophisticated textual analysis models, such as H-GIN [18], 

construct intricate multi-channel graphs to model the 

syntactic, semantic, and sequential properties of text, 

thereby detecting the subtle linguistic patterns of 

propaganda. Similarly, in the related domain of citation 

recommendation, syntax-aware embeddings are more 

effective than standard representations for identifying 

salient sentences [21].  
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Others have demonstrated that a message's affective 

footprint is a strong signal, showing that incorporating 

lexicon-based emotional features can significantly improve 

detection performance [19, 22]. These methods confirm the 

long-held hypothesis that deceptive language often employs 

a distinct emotional palette, typically higher in negative-

valence emotions, to manipulate readers [23]. Recognizing 

the prevalence of text-image posts, a significant research 

frontier has focused on multimodal detection [24]. These 

models, such as MCOT [15] and CLAAF [16], employ 

advanced techniques, including optimal transport and 

adaptive fusion, to align textual and visual representations. 

Despite their sophistication, these content-based 

approaches share a common vulnerability. They typically 

rely on standard fine-tuning of a base model (e.g., BERT) 

with a cross-entropy objective. As a recent comparative 

study has highlighted [5], this standard training regimen can 

produce brittle representations that fail to distinguish 

between truthful and deceptive language robustly. This is 

particularly problematic in the context of domain 

adaptation, where models trained on one topic (e.g., 

politics) must generalize to another (e.g., health), a task 

where standard fine-tuning often fails [25, 26]. 

2.3. Representation-Driven Advances 

Our work addresses this methodological gap by arguing 

that robust content understanding must precede the addition 

of external context. We draw inspiration from recent 

breakthroughs in representation learning. First, we adapt the 

principles of contrastive learning for a supervised setting 

using the Supervised Contrastive (SupCon) Loss [27]. This 

objective explicitly structures the embedding space by 

enforcing tight intra-class clustering and inter-class 

separation. Second, to improve generalization and prevent 

overconfidence, we incorporate Mixup [28], a powerful 

regularization technique applied in the embedding space. 

By training on convex combinations of samples, Mixup 

promotes smoother decision boundaries. 

While these techniques exist in isolation, our work is the 

first to propose a synergistic framework that harmonizes 

them. This combination of contrastive regularization and 

embedding-space mixup sculpts a more resilient feature 

space for misinformation detection, addressing the critical 

need for training regimens that can withstand the evolving 

nature of online falsehoods [29, 30]. 

3. The Proposed SCU Framework 

To address the challenge of learning robust and 

generalizable representations from text, we introduce a 

novel training framework designed to sculpt a highly 

discriminative feature space for misinformation detection. 

Departing from approaches that rely on external context, our 

method focuses on perfecting the model's fundamental 

understanding of the text itself.  

The core of our approach is a unified training regimen that 

synergistically combines two key techniques: The synergy 

arises from a deliberate, two-stage process of regularization: 

(1) a supervised contrastive loss to impose a robust structure 

on the embedding space, and (2) an embedding-space mixup 

strategy for regularization and improved generalization. 

As illustrated in Figure 1, these components are seamlessly 

integrated into a single, end-to-end trainable model built 

upon a standard BERT encoder.

 

Figure 1. The Synergistic Training Framework. BERT encodes an input text into an embedding 𝒆. This embedding drives two 

synergistic paths: a Representation Path, utilizing a projection head and Supervised Contrastive Loss to structure the feature 

space, and a Classification Path, employing Embedding-Space Mixup to regularize the final classifier. A composite loss drives end-

to-end training 

3.1. Architectural Overview 

The framework operates on batches of labeled text 

samples. For each sample, the architecture bifurcates its 

learning objective across two parallel pathways, compelling 

the model to master classification and representation 

simultaneously. 
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1. Foundational Encoding: Each input text is first 

tokenized and processed by the BERT encoder. We 

extract the hidden state of the [CLS] token from the 

final layer, denoted as 𝑒 ∈ 𝑅𝑑, which serves as a rich, 

context-aware embedding for the entire text. This 

embedding forms the foundation for the subsequent 

learning paths. 

2. The Representation Path: This path transforms the 

general-purpose BERT embedding 𝑒 into a specialized 

representation 𝑧 that is optimized exclusively for the 

contrastive learning task. This is achieved by 

passing e through a nonlinear projection head (a two-

layer MLP). The resulting vector 𝑧 is then used as the 

sole input to the Supervised Contrastive Loss. The 

explicit objective of this path is to structure the latent 

space by maximizing intra-class similarity (pulling the 

embeddings of the same-class samples together) while 

minimizing inter-class similarity (pushing the 

embeddings of different-class samples apart). This 

process sculpts a feature space where the clusters for 

'fake' and 'real' news are inherently compact and cleanly 

separated, providing a more robust foundation for the 

downstream classification path to operate upon. 

3. The Classification Path: The original embedding e is 

fed into a linear classifier 𝑓cls to produce a veracity 

prediction (e.g., “false” or “true”). This path is 

regularized using our Embedding-Space Mixup 

strategy and optimized via a standard Cross-Entropy 

loss. Its objective is to learn a highly accurate and 

generalizable decision boundary. 

The synergy arises from this dual-path interaction: the 

contrastive learning on the representation path provides 

better-structured, more separable features. The 

classification path then leverages this clean feature space, 

allowing the Mixup regularizer to operate more effectively. 

Instead of interpolating between noisy or overlapping data 

points, Mixup creates virtual examples along the clean 

margin between the well-defined class clusters. This, in 

turn, encourages the final classifier to learn a smoother and 

more robust decision boundary. 

3.2. The Synergistic Training Regimen 

The novelty of our framework lies in its training regimen, 

which integrates two powerful techniques to overcome the 

limitations of standard fine-tuning. 

Standard fine-tuning with a Cross-Entropy (CE) loss is 

sample-inefficient; it only considers the relationship 

between a single sample and its correct label, ignoring the 

rich information present in sample-to-sample relationships. 

To overcome this, we employ the Supervised Contrastive 

(SupCon) Loss as a powerful regularization term [27]. 

The intuition is to explicitly structure the embedding space 

by enforcing intra-class compactness and inter-class 

separation. To achieve this, the BERT embedding 𝑒 is first 

mapped to a lower-dimensional representation 𝑧 via a 

nonlinear projection head. For a minibatch of N samples, 

the supervised contrastive loss for a given sample (anchor) 

𝑖 is defined as: 

ℒ𝑆𝑢𝑝𝐶𝑜𝑛
(𝑖)

=

−
1

|𝑃(𝑖)|
∑ 𝑙𝑜𝑔

𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖,𝑧𝑝)/𝜏)

∑ 𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖,𝑧𝑘)/𝜏)𝑁
𝑘=1,𝑘≠𝑖

𝑝∈𝑃(𝑖)   
(1) 

where 𝑃(𝑖) ≡ {p ∣ 𝑦𝑝 = 𝑦𝑖 , 𝑝 ≠ 𝑖} is the set of positive 

samples (i.e., other samples of the same class as i) in the 

batch, 𝑠𝑖𝑚(𝑢, 𝑣) denotes cosine similarity, and τ ∈ 𝑅+ is a 

temperature scaling factor. This loss term compels the 

model to learn a feature space where the embeddings of all 

"false" news posts form a tight cluster, distinct from the 

"true" news cluster, making the classification task 

inherently easier. 

Large language models are prone to overfitting and can 

become overconfident in their predictions. To mitigate this, 

we incorporate Mixup, a powerful regularization technique 

[28]. We apply it directly in the embedding space, which is 

a more stable and practical approach for NLP tasks than 

operating on raw text. 

Mixup creates virtual training examples by forming 

convex combinations of existing samples. Given two [CLS] 

embeddings, 𝑒𝑖 and 𝑒𝑗, and their corresponding one-hot 

labels, 𝑦𝑖  and 𝑦𝑗, a new virtual sample (𝑒̃, 𝑦̃) is generated 

as: 

𝑒̃ = λ𝑒𝑖 + (1 − λ)𝑒𝑗  (2) 

𝑦̃ = λ𝑦𝑖 + (1 − λ)𝑦𝑗  (3) 

where λ ∼ Beta(α, α) for a hyperparameter 𝛼. By training 

the final classifier on these interpolated samples, we 

encourage it to learn a smoother, more linear decision 

boundary. This reduces the model's sensitivity to small 

perturbations in the input and significantly improves its 

generalization to unseen examples. 

3.3. Final Training Objective 

The framework is trained end-to-end by minimizing a 

composite loss function that harmonizes the goals of 

classification and representation learning. The final loss 

ℒ𝑇𝑜𝑡𝑎𝑙 is a weighted sum of the standard Cross-Entropy loss 

on the mixed samples and the Supervised Contrastive loss 

on the original projected features: 

ℒ𝑇𝑜𝑡𝑎𝑙 = (1 − 𝛽) ⋅ ℒCE(𝑓𝑐𝑙𝑠(𝑒̃), 𝑦̃) + β ⋅ ℒ𝑆𝑢𝑝𝐶𝑜𝑛  (4) 

where ℒ𝐶𝐸  is the Cross-Entropy loss computed between the 

predictions of the classifier, 𝑓cls(𝑒̃), and the interpolated 

labels ỹ. The hyperparameter 𝛽, which balances the 

contribution of the two loss terms, is selected via a search 

on a held-out validation set to optimize performance. This 

synergistic objective ensures that the model not only learns 

to classify correctly but also builds a well-structured, robust, 

and highly discriminative feature space. 

4. Experimental Setup 

We conduct a rigorous evaluation to test our central 

hypothesis: that a content-only model trained with our 

synergistic framework can achieve a more robust and 
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generalizable understanding of misinformation than models 

reliant on external context. 

4.1. Benchmark Datasets 

We evaluate our framework on two standard English-

language benchmarks: Twitter15 [31] and Twitter16 [9]. 

These foundational rumor detection datasets contain source 

tweets along with their whole propagation cascades, making 

them ideal for a direct and fair comparison between content-

only methods, such as ours, and context-aware baselines. 

The key characteristics of these datasets, summarized in 

Table 2, make them a particularly rigorous testbed for our 

central hypothesis. First, their balanced class distribution 

ensures that performance metrics are not skewed by a 

majority class, providing a clean signal of a model's 

discriminative power. Second, their high engagement 

results in dense, well-defined propagation trees. This feature 

provides a rich source of structural information that context-

aware GNN models are specifically designed to exploit, 

creating a challenging "home-field" advantage for our 

primary baselines. By benchmarking on these datasets, we 

are explicitly testing whether a superior content 

understanding can overcome the strong signals available in 

this abundant social context. 

To ensure robust and reliable results, we employ a 5-fold 

stratified cross-validation protocol with a 70%/10%/20% 

train/validation/test split for all experiments. 

Table 2. Key Statistics of Benchmark Datasets 

Dataset 
Total 

Samples 

% False 

Class 
Key Characteristics 

Twitter15 742 49.9% 
Balanced, High 
Engagement 

Twitter16 412 50.2% 
Balanced, High 

Engagement, Small-Scale 

4.2. Baselines for Comparison 

We benchmark our framework against a comprehensive 

suite of models that represent the state-of-the-art across 

different misinformation detection paradigms. These 

baselines are organized thematically to delineate their core 

approach and provide a multi-faceted comparison clearly. 

4.2.1. Group 1: Traditional & Content-Only Baselines 

These models operate on textual content without 

leveraging complex network structures. 

▪ Traditional Classifiers: Including Decision Tree (DTC) 

and SVM with RBF kernel. 

▪ Deep Learning (Content): BiLSTM for sequential 

modeling, along with powerful Transformer models 

(BERT, RoBERTa, XLNet, BERTweet) fine-tuned via a 

standard cross-entropy loss. 

4.2.2. Group 2: Propagation-based Baselines 

These models explicitly leverage the social network graph, 

focusing on the structure of how information spreads 

through it. 

▪ Hybrid GNNs: Including a CNN-RNN hybrid (CRNN) 

[32] and the Bidirectional Graph Convolutional Network 

(Bi-GCN) [10]. 

▪ Contrastive Graph Learning: RDEA [33] and GACL [1], 

which use contrastive learning on graph structures. 

4.2.3. Group 3: Hybrid and Context-Aware Baselines 

This group includes sophisticated models that integrate 

multiple signals, representing the most powerful 

competitors. 

▪ SiMiD [11]: Our primary baseline. A state-of-the-art 

framework that leverages user community structure and 

text similarity through contrastive learning. 

▪ Other Hybrids: SAFE [34], which fuses text with user 

features; BERT-BiGRU [35]; and the meta-learning 

framework MetaAdapt [36]. 

4.3. Implementation Details 

Our proposed framework and its ablations are 

implemented in PyTorch, building on the bert-base-

uncased model from the Transformers library. 

▪ Core Architecture: The BERT encoder produces 768-

dimensional [CLS] embeddings. The non-linear 

projection head, used for the contrastive loss, is a two-

layer MLP that maps the 768-d embedding to a 128-d 

space before L2 normalization. 

▪ Training Objective: Our composite loss function 

(Equation 3) is optimized using the AdamW optimizer 

[37]. The learning rate was set to 5e-5, and the weight 

decay was set to 4e-4. The SupCon temperature τ was 

tuned to 0.03 based on validation performance. The loss-

balancing hyperparameter β was set to 0.1. 

▪ Regularization: For models using Embedding-Space 

Mixup, the beta distribution parameter α was set to 0.4, 

following established best practices. 

▪ Ablation Models: To dissect the contribution of each 

component, we evaluated our full model (C+M) against 

an ablation using only the Contrastive loss (C). 

All models were trained for a maximum of 12 epochs, 

using an early stopping protocol based on the weighted F1-

score of the validation set, with a patience of 3 epochs to 

prevent overfitting and ensure a fair comparison. 

4.4. Evaluation Metrics 

To provide a comprehensive and robust assessment, we 

report on four standard classification metrics. 

▪ Accuracy: Overall percentage of correct predictions. 

▪ True F1 & False F1: The F1-score for each class 

individually, to assess performance on detecting both true 

and false news. 

▪ Weighted F1-score: The F1-score averaged per class, 

weighted by the number of actual instances for each label. 

Given the balanced nature of these datasets, it serves as a 

primary, stable metric for comparison. 
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All reported results are the mean and standard deviation 

from a 5-fold stratified cross-validation, ensuring the 

statistical reliability of our findings. We use a paired t-test 

with a 95% confidence interval to determine if the 

performance differences between our model and the 

baselines are statistically significant. 

5. Results 

This section presents the empirical validation of our 

synergistic training framework. We designed our 

experiments to answer three key research questions that 

progressively build the case for our central hypothesis: that 

a sufficiently robust content-only model can surpass even 

those that rely on external context. 

5.1. RQ1: How does our Framework Compare to 

Standard Content-Only Models? 

Our first objective is to establish the effectiveness of our 

training regimen compared to standard deep learning and 

traditional methods that also operate exclusively on text. 

Table 3 presents this comparison. Our framework (C+M) 

significantly outperforms all other content-only baselines. 

On Twitter15, our model achieves a Weighted F1-score of 

0.942, surpassing the strongest Transformer baseline, 

RoBERTa (0.926), by +1.6 percentage points. The 

advantage is even more pronounced on Twitter16, where 

our score of 0.947 represents a +2.3 percentage point gain 

over the best-performing baseline, BERT (0.924). As 

expected, traditional classifiers like DTC and SVM-RBF 

are not competitive, and even a standard BiLSTM is 

outperformed by a large margin. 

These results provide clear evidence in support of our 

initial premise: standard fine-tuning with a cross-entropy 

loss is a suboptimal strategy for this task. By synergistically 

combining contrastive regularization and mixup, our 

framework learns a fundamentally more discriminative 

representation from the text itself, setting a new 

performance standard for content-only misinformation 

detection. 

Table 3. Performance Comparison with Content-Only 

Baselines. Results are reported as Mean ± Std. Dev. of 

Weighted F1-score 

Model Type Twitter15 Twitter16 

DTC Traditional 0.577 ± 0.019 0.609 ± 0.063 

SVM-RBF Traditional 0.623 ± 0.043 0.621 ± 0.035 

BiLSTM Deep Learning 0.877 ± 0.062 0.700 ± 0.060 

BERT Transformer 0.918 ± 0.027 0.924 ± 0.036 

RoBERTa Transformer 0.926 ± 0.022 0.915 ± 0.028 

BERTweet Transformer 0.912 ± 0.025 0.921 ± 0.023 

XLNet Transformer 0.668 ± 0.273 0.666 ± 0.231 

Our Method (SCU) Proposed (Content-Only) 0.942 ± 0.013 0.947 ± 0.043 

5.2. RQ2: Can our Content-Only Framework 

Outperform State-of-the-Art Context-Aware 

Models? 

Having established the superiority of our framework 

within the content-only paradigm, we now address a more 

challenging question: can a model relying solely on text 

outperform state-of-the-art methods that leverage external 

social context? Table 4 presents a direct comparison against 

leading propagation-based and hybrid context-aware 

models. The results are compelling. Our purely content-

based framework (C+M) achieves the highest Weighted F1-

score on both datasets, surpassing all context-dependent 

competitors. On Twitter15, our score of 0.942 is higher than 

that of the top graph-based model, RDEA (0.920), and, most 

notably, the state-of-the-art hybrid model, SiMiD (0.931). 

This trend is also observed in the Twitter16 dataset, where 

our model's score of 0.947 again exceeds that of SiMiD 

(0.937). The fact that our method, which has no access to 

propagation trees or user metadata, can outperform models 

specifically designed to exploit that information is a 

powerful testament to our central thesis. It suggests that the 

linguistic signals of misinformation, when unlocked by a 

robust training regimen, can be more reliable and 

discriminative than the structural patterns of its diffusion. 

This finding validates our approach and highlights the 

immense, often untapped, potential of advanced content 

analysis. 

Table 4. Performance Comparison with Context-Aware State-of-the-Art. Results are reported as Mean ± Std. Dev. of Weighted 

F1-score 

Model Type Twitter15 Twitter16 

CRNN Propagation-based 0.510 ± 0.020 0.537 ± 0.140 

Bi-GCN Propagation-based 0.914 ± 0.016 0.906 ± 0.044 

RDEA Propagation-based 0.920 ± 0.037 0.923 ± 0.025 
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GACL Propagation-based 0.870 ± 0.032 0.914 ± 0.024 

SAFE Hybrid 0.897 ± 0.033 0.890 ± 0.027 

BERT-BiGRU Hybrid 0.812 ± 0.046 0.864 ± 0.022 

MetaAdapt Hybrid 0.639 ± 0.042 0.695 ± 0.066 

SiMiD Hybrid (SOTA) 0.931 ± 0.020 0.937 ± 0.031 

Our Method (SCU) Proposed (Content-Only) 0.942 ± 0.013 0.947 ± 0.043 

5.3. RQ3: What is the Source of the Performance Gains? 

(Ablation Study)? 

To validate that our framework's success stems from the 

proposed synergy of its components, we conducted a 

rigorous ablation study. We evaluated our complete model 

(C+M) against a version trained with only the Supervised 

Contrastive loss (C). The results, detailed in Table 5, reveal 

a clear and consistent pattern of synergistic improvement. 

analysis. 

Table 5. Ablation Study Results (Weighted F1-score), showing the synergistic contribution of each component 

Model Type Twitter15 

Our Method (C) 0.924 ± 0.020 0.930 ± 0.021 

Our Method (C+M) 0.942 ± 0.013 0.947 ± 0.043 

The baseline model, which uses only Contrastive 

Regularization (C), already establishes a strong starting 

point, performing competitively with top-tier baselines. 

This confirms the value of explicitly structuring the feature 

space. However, the addition of Embedding-Space Mixup 

(C+M) provides a significant and consistent performance 

boost across both datasets. On Twitter15, the Weighted F1-

score improves from 0.924 to 0.942 (+1.8 percentage 

points). A similar gain is observed on Twitter16, where the 

score rises from 0.930 to 0.947 (+1.7 percentage points). 

This demonstrates that the two components are not 

redundant but are complementary. The contrastive loss first 

organizes the feature space into semantically meaningful 

clusters, and the mixup regularizer then ensures the final 

classifier learns a smoother, more generalizable decision 

boundary within that well-structured space. This synergy is 

the key driver of our framework's state-of-the-art 

performance.  

6. Discussion 

Our empirical results compel a re-examination of a widely 

held assumption in misinformation detection: that external 

social or factual context is indispensable for top-tier 

performance. Our work does not refute the value of context 

but instead argues that the quality of the core content 

representation is a more foundational and often overlooked 

element. By rigorously structuring the embedding space and 

regularizing the classifier, our framework consistently 

surpasses context-aware approaches, reframing content 

analysis as a first-order concern rather than a fallback 

option. 

6.1. Implications 

The primary theoretical implication of our work is the 

reframing of content-based methods from a mere fallback 

option to a foundational necessity. This principle is 

increasingly recognized across diverse information systems, 

where robust, language-independent content analysis now 

forms the basis for core functionalities, such as automated 

tag recommendation in multilingual Q&A platforms 

[38]. While context-aware models are undeniably powerful, 

our results suggest a brittle understanding of the core text 

can undermine their sophisticated reasoning about external 

signals. SCU's performance indicates that the subtle 

linguistic cues that differentiate truthful and deceptive 

language are a richer and more reliable signal than 

previously understood, provided they are learned through a 

sufficiently rigorous training regimen. This positions our 

framework not merely as an alternative, but as a potential 

"drop-in" upgrade for the content-analysis modules of 

future hybrid systems.  

From a practical, systems-building perspective, the 

implications are even more direct. Our framework directly 

addresses the persistent “cold-start” problem that plagues 

real-time detection systems. Context-aware models falter on 

novel content that has not yet accumulated a propagation 

history or for which there are no up-to-date knowledge-

graph entries [13]. Because our method relies solely on text, 

it can instantly flag new claims as they are created. This 

makes it ideal for applications like browser plugins or 

platform-integrated “pre-checks” that provide immediate, 

high-confidence assessments, helping to triage emerging 

misinformation for human moderators and protect users 

from the very first exposure. 

6.2. Threats to Validity 

While our findings are robust within our experimental 

design, we acknowledge several limitations that bound their 

generalizability and represent essential threats to validity. 

A primary threat to external validity lies in the linguistic 

and temporal scope of our evaluation. Our experiments were 

conducted exclusively on English-language Twitter datasets 

from a specific time period (2015-2022). It is well-

established that misinformation is an adversarial and rapidly 
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evolving phenomenon. The linguistic patterns and rhetorical 

tactics prevalent during the events covered by our datasets 

may differ significantly from those used in future 

campaigns. For instance, the increasing sophistication of 

LLM-generated content presents a novel challenge that our 

model, trained on pre-2023 data, has not been explicitly 

exposed to. This highlights the critical challenge of concept 

drift, where the statistical properties of the target concept 

(i.e., "fake news") change over time.  

Consequently, SCU's outstanding performance on these 

benchmarks does not guarantee equivalent success on other 

languages, platforms, or future narratives characterized by 

different rhetorical strategies. This underscores that no static 

model can be a permanent solution; any practical 

information system built on this framework would require 

periodic retraining and continuous monitoring to remain 

effective against new and evolving threats. 

A more fundamental threat concerns the construct validity 

of our central claim. Our model’s architecture represents a 

deliberate choice to master content analysis, which 

necessitates a blindness to other forms of context. In cases 

of subtle factual errors that require external verification, 

knowledge-based verifiers will always excel. For 

uncovering coordinated inauthentic behavior or bot-driven 

amplification, social-context models remain indispensable. 

We do not claim that our method is a panacea. Instead, we 

assert that its robust content understanding provides a 

stronger foundation upon which these other contextual 

models can be built. Our work thus re-prioritizes, but does 

not eliminate, the need for a multi-faceted approach to 

detection. 

Finally, regarding internal validity, we followed a rigorous 

5-fold cross-validation protocol and used established 

baseline results where possible to ensure a fair comparison. 

The consistency of our findings across both datasets 

provides confidence in the reliability of our conclusions.  

7. Conclusion and Future Work 

In this work, we challenged a prevailing assumption in 

misinformation detection: that state-of-the-art performance 

is contingent upon access to external social or factual 

context. We introduced a synergistic training framework 

designed to sculpt a fundamentally more robust and 

discriminative feature space directly from textual content. 

By harmonizing supervised contrastive regularization with 

embedding-space mixup, our framework encourages a 

model to move beyond simple classification and learn the 

deep, intrinsic linguistic patterns that distinguish truthful 

from deceptive language. Our central finding is that the 

"brittleness" of standard fine-tuning has led the field to 

underestimate the power of intrinsic textual signals. By 

focusing on sculpting a superior feature space, our method 

provides a powerful and practical solution to the "cold-start" 

problem, enabling immediate, high-confidence veracity 

assessment. 

Future work will proceed along two primary paths. First, 

we will explore hybrid models that fuse our advanced 

content encoder with the architectural strengths of context-

aware systems (e.g., SiMiD, HGNNR4FD) to unlock 

further performance gains. This could involve adapting the 

framework for the real-time detection of new and emerging 

misinformation narratives, similar to how deep learning is 

applied to identify anomalous patterns in crime data [39]. 

Additionally, further refinement of the feature space could 

be achieved by integrating advanced optimization 

techniques, inspired by the use of meta-heuristic algorithms 

to improve the performance of clustering methods in other 

complex classification tasks [40]. Second, we aim to extend 

our synergistic training principles to the multimodal 

domain. A promising direction for a multimodal SCU (M-

SCU) would be to adapt the synergy to learn a unified 

representation from text and images. We hypothesize this 

could be achieved through a three-stage process: (1) employ 

a joint multimodal encoder, likely based on cross-attention 

mechanisms, to fuse text and image features into a single 

embedding; (2) apply the supervised contrastive loss to this 

joint embedding space, which would not only separate fake 

and real news but also enforce semantic consistency by 

clustering congruent text-image pairs of the same class; and 

(3) perform embedding-space mixup on these unified 

embeddings to regularize the final classifier. Such a 

framework would be inherently sensitive to text-image 

inconsistencies while benefiting from the same robust 

feature space and generalizable decision boundary that 

make the current SCU model effective. 
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