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Abstract: 

The primary contribution of this study is the development of a novel hybrid machine learning 
model to improve defect prediction in industrial manufacturing processes. In this work, the model 
integrated four base models of XGBoost, LightGBM, CatBoost, and an artificial network, whose 
features are modeled with Random Forest (RF) as the metamodel using a stacking ensemble 
approach. For this study, industrial data from Kaggle were used, and through extensive and 

detailed hyperparameter optimization with Optuna, we significantly improved the model's 
prediction performance. In the context of this study, key challenges such as data imbalance and 
feature selection were addressed using data balancing techniques, including SMOTE, and random 
forest-based analysis for identifying the most critical input features. The hybrid model generated 
great results, which were quite better than the traditional single models, with an accuracy of 
96.06% and precision, recall, and F1 scores of 95.10%, 97.32%, and 96.20%, respectively. The 
real-world applications of this model can be many, as it accurately and timely predicts defects in 
industrial environments. All results are reliable and interpretable due to the usage of robust data 

preprocessing methods, including feature standardization and correlation analysis. The results of 
this study will have a significant impact on tasks such as defect management in manufacturing, 
as they provide a scalable solution to enhance product quality, minimize operational costs, and 
improve process efficiency. This research illustrates the promise of hybrid machine learning 
methods in tooling manufacturing process optimization and the performance of the industry. 
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1. Introduction 

Manufacturing processes can now be considered vital to 

today's economic and industrial development. These 

processes often encounter numerous complex challenges in 

the production of components for the automotive, 

electronics, and chemical industries. Manufacturing defects, 

ranging from quality problems to defective components and 

system failures, can escalate manufacturing costs 

geometrically; they also reduce productivity and cause 

reputational harm to manufacturers. This necessitates the 

prediction of defects in these industrial processes, which are 

increasingly viewed as essential in today's industry. Case in 

point: who, under such circumstances, will use these novel 

machine learning and neural networks to effectively 

simulate and predict defects, given the turnaround 

constraints inherent in the enhanced complexity of systems 

within the changing parameters of dynamic production 

environments? At present, many industries rely on 

conventional means of predicting defects in manufacturing 

processes, which include a firm reliance on human 

experience and expertise. Such methods cannot effectively 

identify and predict defects accurately due to insufficient 

precision and flexibility [1]. Especially in complex 

processes and dynamic production environments, there is a 

pressing need for accurate and rapid defect prediction. In 

this regard, new models based on machine learning and 

neural networks are likely to solve the problem [2, 3] 

.Extensive prior research has been conducted on the 

simulation of defects in manufacturing processes with a 

https://cste.journals.umz.ac.ir/
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view toward their prediction. Among the works conducted, 

one of the key articles by Liu et al. [4] demonstrates that 

combined optimization algorithms and neural networks 

substantially increase the accuracy of defect predictions in 

manufacturing systems. Likewise, Y. Wang et al. [5] have 

employed hybrid techniques to detect defects in complex 

systems and achieved some success in increasing detection 

precision. On the other hand, Lee et al. [6] simulated defects 

in semiconductor manufacturing processes with higher 

accuracy using convolutional neural networks (CNNs). 

Provided research makes appreciable mention of the new 

paradigm shift in machine learning and neural networks in 

the simulation and prediction of defects. However, not all of 

the essential advances have addressed the many remaining 

challenges that warrant further research. First, many models 

and algorithms have been applied to only limited datasets 

and thus cannot be generalized to other systems. Most 

existing models also take a massive amount of computing 

time, thereby eliminating their applicability to industrial 

contexts. Furthermore, since in most studies research is 

focused only on one type of defect, a multifaceted approach 

to predict various types of defects in manufacturing 

processes has not been utilized. Hence, this study aims to 

address these gaps by enhancing the accuracy of defect 

prediction in manufacturing processes through the use of 

hybrid and advanced machine learning models and neural 

networks. Although significant progress has been achieved 

in defect prediction for industry, there are still several 

significant problems with previous studies. The use of 

limited and narrowly defined datasets means that results 

from these studies may not apply to a broader range of 

industries. Specific approaches focus only on one type of 

model, which misses the variety in today’s production tasks, 

and few handle problems with uneven data or with real-time 

processing. The field has not paid enough attention to 

methods for selecting the correct hyperparameters and 

features. To fill these gaps, this study proposes a model that 

puts together four advanced models through a random forest 

ensemble. Significant innovations are achieved by utilizing 

real industry data, carefully selecting features based on 

importance, applying SMOTE to address imbalanced 

classes, and tuning hyperparameters using Optuna. The 

combined approach yields more accurate predictions and 

enables their easier and more frequent use in complex 

manufacturing tasks. 

The purpose of this research is to consolidate several 

machine learning models into a single, comprehensive 

model for more accurate comparison and prediction of 

defects in manufacturing processes. This research will 

propose, as its main hypothesis, that various machine 

learning models integrate well due to the use of neural 

networks; hence, defect prediction will be more accurate, 

yielding better results, than employing traditional methods 

that would reduce production costs while improving 

productivity in manufacturing processes. The objective of 

this study is a great pole of improvement in manufacturing 

processes, where the employment of advanced models can 

help minimize costs and maximize productivity and quality. 

This research provides on-time information to build a 

decision-making framework to improve the manufacturing 

processes with the application of advanced solutions across 

different industries. In this respect, with the increasing 

prominence of machine learning and neural network 

technologies, this research plays a key role in advancing the 

Industrial 4.0 agenda, which focuses on integrating smart 

technologies into manufacturing. 

2. Theoretical Foundations and Research 
Background 

2.1. Machine Learning 

Machine learning is a branch of artificial intelligence that 

helps systems develop learning capability from data and 

make decisions based on what they learn, without any 

explicit programming [7] . The primary goal of machine 

learning is to produce models capable of simulating human 

cognitive functions, simulate the process of learning, and 

perform specific tasks based on data [8]. According to 

Ciaburro & Iannace [9], machine learning uses algorithms 

to detect patterns in data and make predictions. Such 

algorithms can generally be classified into three categories: 

supervised learning, unsupervised learning, and 

reinforcement learning [10]. Among these, supervised 

learning is one of the most popular forms of machine 

learning, where models use labeled datasets for training. 

Input data is fed into the model together with the correct 

labels that would enable the model to make predictions or 

classify new data accurately. Algorithms in this category 

would include decision trees, support vector machines 

(SVMs), linear regression, logistic regression, and neural 

networks [11]. these models have a great application in 

classification and regression problems [12]. SVM 

algorithms, in particular, are well-suited for high-

dimensional and complex data classification, such as in 

facial recognition and natural language processing, where 

several applications have been developed utilizing them 

[13]. 

In contrast to supervised learning, unsupervised learning 

involves models that are trained on unlabeled data. The goal 

of unsupervised learning is to identify hidden patterns and 

structures in the data. The key techniques within this 

domain are clustering and dimensionality reduction [14]. Of 

these algorithms, K-means is one of the best-known 

approaches when it comes to clustering [15]. Additionally, 

dimensionality reduction algorithms based on Principal 

Component Analysis (PCA) compress data and isolate 

important features from complex datasets [16]. This form of 

learning is different from the rest, as it mainly learns from 

the interaction of the agent with its environment. In this 

learning paradigm, an agent learns from experience and 

reinforcement—over time, through rewards and 

punishments—while striving to achieve a goal [17]. 

However, this type of learning finds applications in various 

complex domains, ranging from games and robotics to 

automatic control systems [18]. Q-learning and deep neural 

network-based methods, such as deep Q-networks (DQN), 

are popular algorithms in this category, which have proven 

helpful in solving complex problems, including strategic 

games and robotic simulations [19]. Artificial Neural 

Networks (ANNs) remain among the most advanced and 
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essential machine learning models in history and have a 

broad range of applications in problems of data processing 

and prediction [20]. These networks have very significant 

resemblances to the structure of human biological neural 

networks, while their objective is to simulate the processes 

used by the human brain in everyday information 

processing. The individual neurons, which are the building 

units of these neural networks, are set up in several layers. 

They are an input and output function expressed 

mathematically by means of an activation function [21]. 

3. Defects in Production Processes 

The appearance of defects in manufacturing processes 

poses numerous challenges across nearly every industry, as 

they impact product quality, production line efficiency, and 

production costs [22]. Defects can be attributed to various 

sources, including poor process design and monitoring, the 

use of low-quality raw materials, and changing 

environmental conditions [23, 24]. Identifying and 

predicting defects at early production stages can 

significantly reduce production costs, enhance product 

quality, and guarantee customer satisfaction [25]. There are 

generally two significant classifications of defects: those 

caused by equipment and those caused by the quality of raw 

materials or processes of operation [22, 24]. Equipment-

related defects refer to misalignment, tool wear, and 

machine failures, which cause defects that lead to defective 

products [22]. In contrast, processes-related defects are 

defects caused by changes in temperature, pressure, or 

production speed, which could lead to changes in product 

quality due to improper product models [26]. 

Therefore, the implementation of more complex fault 

management systems, which integrate the use of advanced 

statistical tools and machine learning techniques to uncover 

trends embedded in historical production data patterns, has 

become a pivotal trait of current fault management 

strategies [27, 28]. Such models are seen as probing through 

historical data of production systems and extracting 

information regarding failure rates, the operational 

parameters of equipment, and the quality of the raw 

materials used. Algorithms like Random Forest, XGBoost, 

and Deep Neural Networks have shown wonderful success 

in predicting any possible defects [29, 30]. Process 

Monitoring Systems have been recognized as a practical 

approach for reducing or eliminating defects by helping to 

collect and analyze production data while the process 

continues [31]. Additionally, preventive maintenance 

strategies can reduce equipment-related defects. These 

techniques are based on data mining and machine learning, 

forecasting equipment behavior, and recommending 

corrective actions to avert possible failures [32]. Defects 

arising within production processes have always posed a 

serious problem for industries, given their influence, on the 

one hand, on product quality and, on the other hand, on 

production efficiency. Intelligent identification and 

modeling solutions need to address these issues. In this 

respect, the use of advanced artificial intelligence tools 

presents an excellent opportunity for defect mitigation, 

ultimately leading to improved overall production 

performance.  

4. Research Background 

The most critical issue in manufacturing is the presence of 

defects, as it impacts product quality, production efficiency, 

and operational costs. Preventing or anticipating defects 

significantly reduces resource waste while creating value by 

increasing productivity and lowering production costs. The 

recent advancements in machine learning and deep learning 

have spearheaded the development of intelligent models for 

defect prediction. A summary of related studies and their 

objectives is presented, along with a comparison of differing 

approaches, further elucidating optimal solutions, as shown 

in Table 1.

Table 1. Research background 

Authors Article title Goals Model used Dataset Conclusion 

Wang et 

al. [33] 

Sample-Evaluation-

Enhanced Machine 

Learning Approach for 

Fault Diagnosis of Hybrid 

Systems 

This paper aims to increase 

the accuracy of fault 

detection in hybrid systems 

by using hybrid approaches. 

Hybrid neural 

networks with 

knowledge-based 

expert systems 

Experimental data 

from hybrid systems 

This method significantly 

improves the accuracy of 

defect detection and 

demonstrates greater 

adaptability when handling 

sparse and incomplete data. 

Lu et al. 

[34] 

Machine Learning 

Methodologies to Predict 

the Results of Simulation-

Based Fault Injection 

Investigating the use of 

machine learning methods 

to predict defect injection 

results in circuit design. 

Graph Neural 

Networks 

Electronic circuit 

simulation data 

Using GNN enhances 

prediction accuracy 

compared to traditional 

neural networks and delivers 

more precise results for 

defect injection. 

Li et al. 

[35] 

Enhancing LightGBM for 

Industrial Fault Warning: 

An Innovative Hybrid 

Algorithm 

This paper aims to enhance 

the accuracy of defect 

warnings in industry by 

utilizing a combination of 

the LightGBM algorithm 

and optimization methods. 

Improved 

LightGBM 

algorithm 

Diverse industrial 

data 

This combination 

significantly enhances the 

accuracy of fault prediction 

and the delivery of timely 

warnings in industrial 

systems. 

Tang et 

al. [36] 

Graph Neural Networks 

for Chemical Process 

Fault Diagnosis Based on 

Hybrid Variable Feature 

Learning 

This research aims to use 

combinatorial feature 

learning to detect defects in 

chemical processes using 

neural networks. 

Graph Neural 

Networks 

Chemical process 

data 

The use of GNN 

significantly improves defect 

detection in chemical 

processes by leveraging a 

variety of features. 

Li et al. 

[37] 

Multistage Quality 

Prediction Using Neural 

Designing a data-driven 

quality control and 

Long Short-Term 

Memory Network 

Water cooler 

production data 

The LSTM model 

outperformed other models 
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Networks in Discrete 

Manufacturing Systems 

prediction model for 

discrete manufacturing 

environments using deep 

learning and fuzzy theory 

in accurately predicting and 

identifying defects promptly. 

Liu et 

al. [4] 

Developing a Hybrid 

Algorithm Based on an 

Equilibrium Optimizer 

and an Improved 

Backpropagation Neural 

Network for Fault 

Warning 

This paper aims to enhance 

the prediction and warning 

of defects in manufacturing 

systems by utilizing 

optimization algorithms and 

neural networks. 

Hybrid algorithm 

of equilibrium 

optimization and 

improved neural 

network 

Industrial production 

simulation data 

This model significantly 

enhances prediction accuracy 

and is well-suited for 

providing timely warnings of 

defects in manufacturing 

processes. 

Kosim 

et al. 

[38] 

Optimization of prediction 

and prevention of defects 

on metal based on AI 

using VGG16 architecture 

Prediction and prevention of 

metal defects using machine 

learning methods, especially 

CNN architecture with 

VGG16 

Convolutional 

neural network, 

VGG16 

Metal defect dataset 

(10 classes, 17221 

training data, 4311 

test data) 

An accuracy of 89% during 

training and 76% during 

testing was achieved, 

effectively interpreting the 

type of fault and preventing 

its occurrence. 

Yang et 

al. [1] 

Using Deep Learning to 

Detect Defects in 

Manufacturing: A 

Comprehensive Survey 

and Current Challenges 

Investigating deep learning 

methods for detecting 

manufacturing defects 

across various industries, 

with a focus on developing 

real-time and high-accuracy 

solutions for complex 

environments. 

Deep Learning 

(Various Models) 

Survey-based, 

includes defect 

categories across 

multiple sectors (e.g., 

electronics, textiles, 

pipes). 

Deep learning enhances 

defect detection, but 

challenges persist in 

detecting small objects and 

handling complex 

backgrounds, necessitating 

future improvements in 

manufacturing quality 

control. 

Ma et al. 

[39] 

Prediction of Thermal 

System Parameters Based 

on PSO-ELM Hybrid 

Algorithm 

This research aims to predict 

the parameters of thermal 

systems using a hybrid PSO-

ELM algorithm for higher 

accuracy. 

PSO-ELM hybrid 

algorithm 

Thermal systems 

data 

This method achieves higher 

accuracy in predicting 

thermal parameters 

compared to conventional 

methods and proves effective 

in detecting defects. 

Lee et 

al. [6] 

A Convolutional Neural 

Network for Fault 

Classification and 

Diagnosis in 

Semiconductor 

Manufacturing Processes 

This paper aims to 

investigate the use of 

convolutional neural 

networks to identify and 

classify defects in 

semiconductor 

manufacturing processes. 

Convolutional 

neural network 

Semiconductor 

manufacturing 

process data 

CNN improves defect 

classification accuracy and 

pattern detection in 

semiconductor 

manufacturing. 

The studies discussed above have considered several 

aspects of fault detection and diagnosis in manufacturing 

systems, producing significant advances. However, the 

literature survey gives a far-reaching statement of 

limitations and future research opportunities that reveal the 

need for new research and methodological enhancements. 

Thus, Wang et al. [33] and Ma et al. [39] used relatively little 

contextual data, often developed via simulation or collected 

from particular systems, thus causing the models to be less 

generalizable to other industrial areas. In this study, we 

attempt to bring such generalizations to reality by the use of 

real-time and varied industrial data. Several studies, such as 

those by Kosim et al. [38] and Lee et al. [6], have employed 

only one type of model, specifically CNNs. While highly 

effective in detecting specific patterns, such models can 

benefit from hybrid methodologies implemented in 

connection with optimization algorithms. The study tries to 

fill this gap with the hybrid stacking model. Some papers, 

such as Yang et al. [1], have indeed demonstrated the 

advantages of using deep learning in defect detection; 

however, they have also reported limitations related to real-

time data processing in complex industrial conditions, 

rendering the implementation of these advantages 

inefficient. Current research aims to provide industry 

solutions with practical applicability by emphasizing speed 

and real-time prediction via model application. 

Additionally, studies such as Liu et al. [4] and Li et al. [35] 

provide limited details on the data preprocessing steps and 

feature selection methods. The present study responds to 

this gap by employing correlation analysis and data balance 

via SMOTE to optimize the quality of input data and allow 

for improved model accuracy. Some studies have totally 

focused on chemical processes or specific datasets, such as 

Tang et al. [36], whereas defects could evolve from 

interactions of several factors in different production 

processes. By analyzing multidimensional and 

comprehensive industrial data, this investigation aims to 

identify defects within complex processes. In the studies by 

Wang et al. [33] and Ma et al. [39], optimization of model 

parameters has received inadequate attention. This study 

proposes to optimize the model parameters to deal with this 

limitation by using an advanced optimization framework, 

that is, OPTUNA, for maximizing the prediction accuracy. 

Thus, this study aims to close these gaps by developing a 

hybrid stacking model that combines the strengths of 

advanced machine learning models and neural networks. 

The proposed model eventually improves the generalization 

capability of defect prediction accuracy through the 

treatment of wide industrial data, comprehensive 

preprocessing models, and hyperparameter optimization. 

This also makes the method more effective and applicable 

across various industries in real-world settings, taking into 

account the complex nature of real-time industrial 

environments. 

4.1. Research Methodology 

This study aims to predict whether a given production day 

in an industrial factory will result in high or low defect 
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levels, using a hybrid machine learning approach. The 

primary aim is to develop a robust hybrid model that 

combines an artificial neural network with other machine 

learning methods so that an accurate defect prediction is 

obtained. The data source is a Kaggle dataset containing 

variables such as production volume, supplier quality, costs, 

and defect rates. In preprocessing, correlation analysis, 

feature selection, and data balancing with SMOTE were 

done. A stack-based hybrid machine learning model was 

designed and optimized using the OPTUNA framework for 

hyperparameters to increase efficiency and robustness. 

Performance was evaluated in terms of Accuracy, Precision, 

Recall, and F1 score and compared with those of seven other 

models. All analyses and modelling were done using 

Python. 

 

 

Figure 1. Workflow of the Proposed Hybrid Machine Learning Methodology for Defect Prediction

4.2. Features Description 

The dataset is entirely original and unpublished, containing 

information on factors related to production processes and 

quality management in an industrial factory [40]. The 

dataset comprises 16 independent variables and one target 

variable. The target variable, DefectStatus, indicates 

whether a production day is classified as high-defect (1) or 

low-defect (0). It consists of 3,240 samples. Table 2 offers a 

comprehensive summary of the variables of the dataset 

applied in defect prediction. Each of the sixteen independent 

features in the dataset reflects important facets of industrial 

manufacturing processes; one binary target variable also 

exists. These characteristics encompass various operational 

aspects, including production volume, cost, supplier quality, 

delivery time, defect rate, maintenance, energy 

consumption, and workforce productivity. To guarantee 

clarity and openness in the subsequent research, every 

variable is enumerated together with its value range, data 

type, and a quick explanation.

Table 2. Features description 

Value range Data type Description Variable 

100 to 1000 units/day Integer Number of units produced per day ProductionVolume 

$5000 to $20000 Float Production cost per day ProductionCost 

80% to 100% Float (%) Supplier quality rating SupplierQuality 

0 to 5 days Integer (day) Average delivery delay DeliveryDelay 

0.5 to 5.0 defects Float Defect rate per thousand units produced DefectRate 

60% to 100% Float (%) Overall quality assessment QualityScore 

0 to 24 hours Integer Maintenance hours per week MaintenanceHours 

0% to 5% Float (%) Percentage of production downtime DowntimePercentage 
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2 to 10 Float Inventory turnover ratio InventoryTurnover 

0% to 10% Float (%) Inventory run-out rate StockoutRate 

80% to 100% Float (%) Labor productivity level WorkerProductivity 

0 to 10 incidents Integer Number of safety incidents per month SafetyIncidents 

1000 to 5000 kWh Float Energy consumed (kWh) EnergyConsumption 

0.1 to 0.5 Float Energy efficiency ratio EnergyEfficiency 

1 to 10 hours Integer (day) Added production time AdditiveProcessTime 

$100 to $500 Float ($) Cost of additives per unit AdditiveMaterialCost 

0 or 1 Binary Defect prediction status (0: low defects, 1: high defects) DefectStatus 

 

As shown in Figure 2, the dataset emphasizes defective 

samples, which are rare but crucial to identify in production. 

To address this, non-defective samples were added, but the 

dataset remains imbalanced. This imbalance can hinder 

machine learning model performance by biasing predictions 

toward the dominant class.

 

Figure 2. Imbalanced distribution of the target variable

Figure 3 presents the histograms and their density curves 

(KDE) of the distribution patterns for the 16 most important 

features of the dataset. These, in turn, exhibit a 

comparatively similar distribution pattern for evenly spread 

values, while those such as DefectRate and QualityScore 

demonstrate a more concentrated distribution, whence it can 

be inferred that data points lie more densely in some places 

than others. There are features such as DeliveryDelay and 

SafetyIncidents, which are discrete and have their values 

grouped into categories. In contrast, others, such as Energy 

Efficiency and Additive Material Cost, are continuous and 

cover their entire range. This gives an overall glimpse of the 

internal structure of the dataset and its behavior.  

4.3. Data Preprocessing 

The dataset used in this study was of high quality, with no 

missing, noisy, or incomplete data. However, this study 

identified the challenge of addressing imbalanced data 

distributions. Correlation analysis revealed linear 

relationships between variables in the dataset [41, 42]. By 

examining these relationships, correlation analysis helped 

identify features that strongly influenced the target variable, 

enabling the removal of features with weak or redundant 

correlations. A correlation matrix and a heatmap were used 

to visually represent the relationships between variables, 

providing a clear and comprehensive view of the dataset’s 

structure. 

Additionally, Figure 4 provides a summary of correlations, 

indicating that there are no significant correlations between 

the independent features. This indicates that no features are 

redundant and each can be used in the modeling process. 

The study was based on analyzing 16 original features, and 

the cumulative analysis, which also featured Information 

from the Random Forest algorithm, selected the top 7 

features as they collectively represent 80% of the overall 

critical information. The importance of each feature in 

predicting the variable is considered and displayed in Figure 

4 [43].  

A cumulative feature importance analysis was conducted 

to determine the optimal number of features to select. 

Features were ranked by their importance, and their 

cumulative impact was assessed. Based on this analysis, the 

top 7 features, accounting for approximately 80% of the 

information in the dataset, were selected [44]. 

Figure 6 outlines the model’s selected feature set: 

MaintenanceHours, DefectRate, QualityScore, 

ProductionVolume, AdditiveMaterialCost, StockoutRate, 

and EnergyEfficiency. Focusing on these seven features, 

rather than the initial sixteen, allowed the models to 

concentrate on more relevant and informative variables. 
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Figure 3. Data distribution on histograms and density plots 

 

Figure 4. Correlation Heatmap 
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Figure 5. Feature Importance 

 

 

Figure 6. Cumulative feature importance

4.4. Data Balance 

To address data imbalance, the SMOTE (Synthetic 

Minority Over-sampling Technique) method was applied to 

increase minority class samples. SMOTE generates 

synthetic samples to reduce imbalance and improve model 

performance in predicting the minority class [45]. The 

method selects a random minority class sample, called the 

reference sample, and identifies its nearest neighbors using 

the K-Nearest Neighbors (KNN) algorithm (commonly 

with  k=5). A new synthetic sample is then generated at a 

point between the reference sample and a randomly selected 

neighbor in the feature space [46]. The following formula 

governs the process: 

𝑋𝑛𝑒𝑤 = 𝑋𝑠𝑎𝑚𝑝𝑙𝑒 + 𝑔𝑎𝑝 × (𝑋𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 − 𝑋𝑠𝑎𝑚𝑝𝑙𝑒)  (1) 

Here, Xsample represents the reference sample, Xneighbor 

is one of the nearest neighbors, and gap is a random number 

between 0 and 1. In this study, the dataset was divided into 

two parts: 80% of the data was used for training the models, 

while the remaining 20% was used to evaluate their 

performance. 

4.5. Hybrid modeltpm32 

This paper recommends a hybrid model based on the 

stacking technology as an ensemble learning method [47]. 

Ensemble learning is performed using different models to 

enhance the prediction ability and robustness of the model 

[48]. Stacking improves classification and regression by 

combining outputs from the base models and providing 

them to a meta-model, which gives the final predictions 

[49]. This hybrid model employed XGBoost, LightGBM, 

and CatBoost as base models and Random Forest as the 

meta-model. The hyper-parameter optimization of the 

model was done using the Optuna Optimizer for 50 trial 

runs, tuning the tree count, model depth, learning rate, and 
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number of neurons in a neural network [50]. This process 

greatly enhanced the accuracy and performance level of the 

model. The architecture of the proposed stacking ensemble 

model is depicted in Figure 7, illustrating the interaction 

between the base models and the meta-learner.

 

Figure 7. Stacking model structure

The stacking model used in this study consisted of two 

main layers, with the base models forming the first layer. In 

this layer, four powerful machine learning models—

XGBoost, LightGBM, CatBoost—and an Artificial Neural 

Network (ANN) were employed for prediction. Each model 

brings unique features that contribute to improved 

prediction performance: 

XGBoost: XGBoost uses gradient boosting to create 

decision trees, minimizing errors and enhancing efficiency 

in learning complex nonlinear patterns through features like 

tree pruning and model complexity control [51] . 

LightGBM uses Leaf-wise Splitting and histogram-based 

binning to optimize memory usage and computational 

efficiency, making it ideal for large, high-dimensional 

datasets and reducing training time [52]. 

CatBoost: CatBoost is a preprocessing technique that 

directly processes categorical variables, employing Ordered 

Boosting to reduce prediction error and resist overfitting 

[53]. 

The ideal hyperparameter values found for the three base 

models utilized in the stacking ensemble—XGBoost, 

LightGBM, and CatBoost—are compiled in Table 3. To 

improve each model's performance in terms of 

generalization and prediction accuracy, these parameters 

were adjusted using the Optuna optimization framework.  

Table 3. Optimal hyperparameter values for XGBoost, 

LightGBM, CatBoost 

Optimal  value parameter model 

7 

 

max_depth 

XGBoost 0/239679 learning_rate 

189 n_estimators 

41 

 

num_leaves 

LightGBM 0/160612 learning_rate 

182 n_estimators 

8 

 

depth 

CatBoost 0/276133 learning_rate 

214 iterations 

Artificial Neural Network (ANN): The most important part 

of an artificial neural network is that it has multiple layers 

connected to each other, which can propagate data through 

weighted connections using activation functions such as 

ReLU and Sigmoid [54]. ANNs are capable of learning 

complex nonlinear relationships and hidden patterns in data 

through feedback iteration [54]. In the study, the ANN 

general structure for both the input and output layers 

consisted of one input layer, two hidden layers, and one 

output layer, as depicted in Figure 8. In the case of each 

hidden layer of 12 neurons with ReLU as its activation 

function, it helps solve nonlinear relations [55]. A sigmoid 

activation function was used as the output layer, which 

produced values between 0 and 1 as they were suitable for 

binary classification. Adam optimizer [56] was used for the 

weight updates. The network was trained up to 110 epochs 

with a batch size of 10 and refined accuracy. The parameters 

of the ANN used in this study are presented in Table 4. 
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Figure 8. Neural network structure used in stacking 

Table 4. ANN parameters 

Layer Number of neurons Activation function 

Input 7 - 

First Secret 12 ReLU 

Second Secret 12 ReLU 

Output 1 Sigmoid 

 

Random Forest, consisting of multiple decision trees, was 

employed in this study as the metamodel layer. These trees 

are built using a variety of features and characteristics of the 

data samples, and their outputs are aggregated—typically 

through averaging or voting—to produce the final 

prediction [57, 58] . Random Forest effectively mitigates 

overfitting by incorporating randomization techniques, 

enabling it to generate stable and accurate predictions. In the 

stacking structure, Random Forest serves as the metamodel, 

combining the outputs from the base models to produce the 

final prediction [59]. To optimize the performance of the 

Random Forest model, key hyperparameters were fine-

tuned, with optimal values determined as n_estimators=93 

and max_depth=6. 

4.6. Comparison of the Hybrid Model with Other 

Machine Learning Methods 

To evaluate the performance of the hybrid (stacking) 

model, its results were compared to those of seven other 

machine learning models. Each model was optimized using 

Grid Search to ensure their optimal performance. Brief 

descriptions of these methods are provided in Table 5. 

Table 5. Other machine learning methods used for comparison with the hybrid model 

Method Explanation 

SVM 
An algorithm that separates data by finding an optimal hyperplane that maximizes the margin between classes. For complex 

problems, it uses nonlinear kernels like the Radial Basis Function (RBF) to create advanced class boundaries [45]. 

KNN 
A simple algorithm that classifies new data based on its proximity to the K nearest neighbors. This algorithm does not require prior 

training and classifies data solely based on the distance to the training examples [46]. 

Naive Bayes 
A statistical model based on Bayes' theorem, valued for its speed and efficiency in classification. Despite assuming conditional 

independence among features—a simplification often violated—it consistently delivers strong performance [60]. 
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Decision Tree 
A tree-based structure that uses data features to make decisions, with each node representing a decision point. Splits are based on the 

feature providing the most information, continuing recursively to the leaf nodes for final decisions([11]. 

Random Forest 
A collection of decision trees trained on random data subsets, with final predictions made by majority voting (classification) or 

averaging (regression). This method enhances accuracy and reduces overfitting compared to individual trees [54]. 

Logistic 

Regression 

A linear model predicts classes by estimating the probability of each class within the range [0,1]. It uses the logistic (sigmoid) 

function, making it ideal for binary classification problems [11]. 

MLP (Neural 

Network) 

An artificial neural network (ANN) uses hidden layers to capture nonlinear relationships in data. A Multilayer Perceptron (MLP) 

comprises an input layer, one or more hidden layers, and an output layer, trained using the backpropagation algorithm. These 

networks are highly effective for addressing complex, nonlinear problems[61]. 

Accuracy, Precision, Recall, and F1 score were used to 

evaluate model performance. The metrics are derived from 

the concepts of TP, TN, FP, and FN. Correctly identified 

defect cases are denoted by TP, and cases that are accurately 

predicted as non-defective are denoted by TN [62]. FP refers 

to incorrect predictions of the defects while no defect exists, 

and FN indicates that the defect cases have been missed. 

This is what makes up the basis for evaluating the model's 

accuracy and adequacy of the model. 5 5-fold cross-

validation was used to assess the generalizability and 

stability of the model. Four commonly used classification 

metrics—Accuracy, Precision, Recall, and F1 Score—were 

used to evaluate the machine learning models' performance. 

These metrics provide a comprehensive evaluation of the 

model's performance, particularly when working with 

unbalanced datasets. Table 6, which is based on Jafarnejad 

et al. [63], provides the definitions and mathematical 

formulas for each metric.

Table 6. Evaluation metrics for machine learning models  

Index Definition Formula 

Accuracy The ratio of correct predictions (both positive and negative) to the total number of samples. 
TP + TN

TP + FP + FN + TN
 

Precision The ratio of correctly predicted instances of a class to the total instances predicted as that class. 
TP

TP + FP
 

Recall The ratio of correctly predicted instances of a class to the total actual instances of that class.  
TP

TP + FN
 

F1 Score The harmonic mean of Precision and Recall to balance the trade-off between them. 
2 × Precision × Recall

Precision + Recall
 

4.7. Findings 

In this section, the performance of the hybrid model is 

examined and compared with that of other machine learning 

models. The Python programming language was utilized for 

this study, and all models were executed on a system 

equipped with an Intel Core i7-13700H processor, 16 GB of 

RAM, and Python version 12.3. The performance results of 

the models are presented in Table 7. 

Table 7. Performance results of the models 

Model Accuracy Precision Recall F1 Score 

SVM 0/8982 0/9043 0/8962 0/9003 

KNN 0/8688 0/9522 0/7835 0/8597 

Naive Bayes 0/9028 0/9086 0/9835 0/9446 

Decision Tree 0/9083 0/8603 0/9803 0/9164 

Random Forest 0/9257 0/8794 0/9911 0/9319 

Logistic Regression 0/7917 0/8051 0/7835 0/7942 

MLP 0/8991 0/9212 0/8784 0/8993 

Ensemble (Stacking) 0/9606 0/9510 0/9732 0/9620 
 

The assessment performed on various machine learning 

models suggested that the ensemble stacking model had an 

edge over all the other models. The accuracy of 0.9606 is 

higher than that of its individual models, indicating 

significant predictive power in distinguishing between 

defective and non-defective samples. The ensemble 

achieved a precision of 0.9510, indicating a good proportion 

of correct predictions for positive samples. In comparison, 

Random Forest and Naive Bayes showed relatively low 

precision scores of 0.8794 and 0.9086, respectively, which 

again gives a glimpse into the strength of the ensemble 

model in reducing the false positive error. The ensemble 

model had the highest recall value of 0.9732 among all, 

confirming its superior ability to identify true positives. 

While Naive Bayes (0.9835) and Decision Tree (0.9803) 

gave good recall values, the ensemble was optimizing recall 

against other competing metrics. The hybrid model 

achieved the highest F1 score of 0.9620, indicating an 

optimal balance between precision and recall. This balance 

is characterized by a very high positive detection rate and 

high prediction accuracy. In comparison, F1 scores for 

Naive Bayes and Random Forest were at 0.9446 and 0.9319, 

respectively; even then, they could not surpass the hybrid 
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model. Overall, the hybrid model aptly combined the 

features of each of the models while diminishing the 

weaknesses, either by merging the outputs of base models 

or employing a metamodel. When compared to the single 

model approaches such as Random Forest, SVM, and Naive 

Bayes, the hybrid model proved superior on all counts due 

to its multilayered architecture.  

Figure 9 illustrates the performance of various machine 

learning models. The stacking hybrid model outperformed 

all other models across these metrics . This comparison 

highlights the advantages of the stacking technique, which 

leverages the strengths of base models while mitigating 

their weaknesses. The hybrid model’s use of this technique 

resulted in substantial improvements in predictive 

performance and a balanced optimization of all evaluation 

metrics.

 

 

Figure 9. Performance of various machine learning models

4.8. Conclusion and Suggestions 

This study develops a defect prediction using a stacking 

based ensemble learning model. Four base models were 

included: XGBoost, LightGBM, CatBoost, and ANN with 

Random Forest as the metamodel. In comparison with the 

single models, this technique provided ample improvement 

in performance. Finally, the performance of the models was 

evaluated using the main performance metrics, including 

accuracy, precision, recall, and F1 score. Since it utilizes the 

pros of the base models and avoids their deficiencies, the 

results have established a significant advantage of the 

stacking hybrid model over the individual models in all 

performance metrics. With an accuracy of 96.06%, the 

model can indeed predict defect and non-defect samples 

correctly. Additionally, false positive mistakes were 

significantly minimized, with a precision of 95.10% at a 

level exceeding the degree of measurement, and the positive 

prediction was measured at a higher accuracy than expected. 

Recall wise, the stacking hybrid model could almost capture 

all of the actual defect samples with a value of 97.32%. 

Furthermore, the F1 score of 96.2.0% showed good balance 

between precision and recall for this technique. Since these 

problems are complicated and involve dealing with 

imbalanced datasets, these analyses show that ensemble 

learning techniques, particularly stacking, achieve a 

significant uplift in terms of improvements in model 

performance. The reduction of model complexity and 

efficiency was achieved partly by employing data 

preprocessing methods, such as SMOTE, for balancing the 

classes and feature selection.  

The present study aims to achieve a more accurate 

prediction of defects in industrial manufacturing processes 

by using a stacking hybrid model that efficiently detects and 

predicts defects, outperforming earlier techniques. The 

results point towards the better performance of the proposed 

methodology across numerous crucial parameters, being in 

line with earlier studies. One significant distinction of this 

study from prior works, such as Wang et al. [33] and Ma et 

al. [39] , is its use of a diverse industrial dataset. In contrast, 

many earlier studies relied on data confined to specific 

systems. This data variety enhanced the generalizability of 

the hybrid model compared to previous approaches. In 

terms of model design, the present study mitigated the 

weaknesses of individual models by stacking and 

combining four base models: XGBoost, LightGBM, 

CatBoost, and ANN. In contrast, earlier studies, such as 

Kosim et al. [38] and Lee et al. [6], often employed single 

models like CNN, which limited their ability to identify 

complex patterns. Furthermore, the present work introduced 

a more precise and real-time applicable model relative to 

studies like Yang et al. [1], which cited problems, such as 

the inability to conduct real-time predications and limited 

capabilities in handling complex data. This was 

accomplished through hyperparameter optimization and 

preprocessing methods such as SMOTE, which helped to 

lay down an excellent way of solving the problems of 
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imbalanced datasets. Regarding data preprocessing, 

correlation analysis, and feature selection methods based on 

feature importance were utilized: seven important features 

were selected that contributed to nearly 80% of the relevant 

information. These techniques reduced the problem’s 

dimensionality, improved model accuracy, and increased 

training speed. By contrast, studies such as Liu et al. [4] and 

Li et al. [35] provided limited details about feature selection 

and its impact on model performance. Overall, this study 

addressed existing research gaps by focusing on model 

combination, comprehensive optimization, and utilizing 

diverse industrial data. The proposed approach not only 

achieved higher prediction accuracy but also paved the way 

for broader applications of machine learning models in real-

world industrial environments. 

The applications of this research will prove to be useful in 

automotive, electronics, pharmaceuticals, and packaging 

industries. Due to its flexible nature, the proposed hybrid 

model will be applicable in diverse scenarios, thereby 

identifying defects at different stages of the production 

phase. This has great potential for enhancing quality, 

reducing costs, and improving productivity. The study 

presents a stacking-based ensemble learning model that, 

through the application of advanced machine learning 

techniques, significantly improves defect prediction in 

manufacturing processes. To advance the achievements, 

future work can contemplate implementing advanced deep-

learning models. Such models can capture complicated 

hidden patterns, accordingly improving predictive 

performance under complicated data circumstances. 

Another direction for future work is using the hybrid model 

by industries on their production lines. This will open the 

door for an assessment of the performance of the model, 

considering factors that come up in practice, including data 

noise, processing capabilities, and operational variability. In 

real industrial settings, implementing this model could help 

industries identify and implement defect prevention 

practices, thereby achieving excellent operational goals. 

Although the results are encouraging, there are some 

limitations to this study. First, the model was trained and 

tested on an industry-specific dataset. Thus, if you wish to 

expand into other industries, you may need to consider that. 

Second, while the SMOTE algorithm allowed us to address 

imbalances in data, which allowed us to create a good 

model, it could introduce synthetic noise. Finally, the model 

has not been adapted to accommodate real-time dynamic 

updates to reflect changes in the production context. In 

future directions, we could have applied the model in 

dynamic live industrial environments, with a focus on 

adaptive learning, and created evaluations based on the 

performance of the model in a host of manufacturing 

domains. 
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