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Abstract: 

Data-driven approaches, by effectively capturing complex nonlinear behaviors, have emerged as 

a powerful tool for enhancing control of real engineering systems. Nonlinear discrete-time 

fractional-order systems have earned much interest in the design of controllers and system 

modeling due to special characteristics that include long-term memory, an expansion of stability 

domains, and higher accuracy. It is thus essential to establish some straightforward theories for 

proving and analyzing the stability of these particular systems. This paper presents a sophisticated 

approach to the stability analysis of discrete Caputo fractional-order systems, developing a new 

Lyapunov-based stability analysis framework specifically tailored for these systems. The 

effectiveness of the proposed approach has been critically analyzed theoretically and validated 

through numerical simulations. Methodologically innovative, such reasoning thus provides a 

strong solution to the stability test problem of discrete fractional order systems, opening up 

greater avenues for the advancement of control theory and dynamical system theories within 

fractional calculus. 
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1. Introduction 

The development of fractional calculus is a natural 

extension of the conventional notion of derivatives in 

ordinary differential Equations to those cases involving 

fractional-order derivatives. This evolution started in the 

19th century, bringing about continuous questions as to how 

ordinary differential Equations could be extended to include 

fractional derivatives. Nowadays, the modern field has 

grown significantly, marked by numerous improvements 

and innovations [1]. The development of fractional calculus 

began in earnest in the 19th century with the introduction of 

the Riemann-Liouville approach, formulated by Bernhard 

Riemann and Joseph Liouville in the 1840s, laying the 

foundational principles. In 1867, Adolph Grunwald further 

developed the subject in what would later be called the 

Grünwald-Letnikov formulation [2]. The French 

mathematician Augustin-Louis Cauchy also contributed to 

this development with the introduction of the fractional 

integral. Cauchy, during the period from 1790 to 1857, 

discussed several mathematical problems, especially in 

mathematical analysis, and gave essential contributions to 

the theory of complex functions, including the concept of 

fractional integral [3]. In the twentieth century, the 

development of fractional calculus continued to evolve 

significantly. In 1934, Aleksei Letnikov completed 

Grunwald's work, bringing the Grünwald-Letnikov 

formulation to its final form. Later, in 1967, Michele Caputo 

developed another type of fractional calculus that was more 

applicable to physical and engineering applications, as it 

provided better modeling for initial conditions. In the last 

few decades of the twentieth century, broad research 

practice has been conducted in the realm of the fractional 

calculus, which extended and promoted the said calculus. 

Among them, the works of Augustin-Louis Cauchy [4], Yuri 

Luchko [5], and Anatoly Kilbas [6] are the most prominent 

and have really developed the study of fractional calculus. 

In the twenty-first century, fractional calculus has emerged 

as a rapidly growing field of research in mathematics and 

engineering. Current studies are being carried out on 

numerical methods, applications, and theoretical 

developments in fractional calculus. Besides, this field is 

also widely applied to the modeling and analysis of complex 

systems in many different fields, reflecting its versatility 

and importance. On that note, a historical view from the 

theoretical status of fractional calculus to a dynamic and 

operational research area is then recognized as a strong tool 

https://cste.journals.umz.ac.ir/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
https://foreign.umz.ac.ir/
https://cste.journals.umz.ac.ir/


Veisi and Delavri /Contrib. Sci. & Tech Eng, 2025, 2(4) 

2 
 

for modeling and analyzing complex systems [7]. Methods 

and systems exhibiting memory properties and non-

Markovian behaviors can be represented and investigated 

only with the help of this significant and intriguing subfield 

of mathematics and engineering, known as fractional 

calculus. In this framework, three approaches typically 

represent the Fractional Calculus, one of which is the 

Grünwald-Letnikov (GL) approach. Other widely used 

definitions are those by Riemann-Liouville (RL) and 

Caputo. 

1.1. Definition 

In this section, attention will be given to the presentation 

of some definitions in fractional calculus and their inter-

relations. One of the critical topics involving fractional 

calculus is indeed the fractional-order integral, which 

introduces the possibility of extending the notion of 

integration to fractional orders. In what follows, the 

fractional-order integral will be considered in the 

continuous and discrete cases. The continuous fractional 

integral generalizes the ordinary integral to perform 

integration to a fractional order, not necessarily an integer. 

The continuous fractional integral of order 𝛼 is given, for 

instance, in a study by Yang and Zhang [8], by: 

𝐼𝛼𝑓(𝑡) =
1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑡

𝑎
𝑓(𝜏)𝑑𝜏  (1) 

where 𝐼𝛼 denotes the fractional integral of order 𝛼, 𝛤(𝛼) is 

the gamma function, which generalizes the factorial 

function for real and complex numbers, 𝑎 is the lower limit 

of integration, 𝑡 is the upper limit of integration, and 𝜏 is the 

integration variable. 

The discrete fractional integral generalizes the integration 

in discrete space applied to data and functions defined on 

integers. The discrete fractional integral of order 𝛼 is given 

by Ferreira [9]: 

𝛥−𝛼𝑓(𝑘) =
1

𝛤(𝛼)
∑ (𝑘 − 𝑗 + 1)𝛼−1𝑘

𝑗=0 𝑓(𝑗)  (2) 

where 𝛥−𝛼 represents the discrete fractional integral of 

order 𝛼, 𝛤(𝛼) is the gamma function, k is the upper limit of 

summation, and 𝑗 is the summation index. One of the 

advantageous sides of such a derivative consists in that its 

calculation is straightforward and effective, and is usually 

implemented numerically using such methods as Euler's 

method. However, its accuracy as an approximation to the 

real derivative is relatively low when functions with 

substantial deviations are considered. The GL fractional 

derivative of a function 𝑓(𝑡) reads as [8]: 

𝑑𝛼𝑓(𝑡)

𝑑𝑥𝛼 = lim
ℎ→0

1

ℎ𝛼
∑ (−1)𝑘 (

𝛼
𝑘

)∞
𝑘=0 𝑓(𝑡 − 𝑘ℎ)  (3) 

where 𝛼 is a positive real number and (
𝑎
𝑘

) is the binomial 

coefficient defined as: 

(
𝛼
𝑘

) =
𝛼(𝛼−1)(𝛼−2)…(𝛼−𝑘+1)

𝑘!
  (4) 

Another advantage of this class of derivatives is that they 

enjoy good properties in approximating functions such as 

analytic functions and functions containing singular points. 

However, this approach often requires complex and 

computationally intensive calculations, and sometimes 

necessitates the use of specialized functions and techniques. 

The Riemann-Liouville (RL) fractional derivative of a given 

function 𝑓(𝑡) can be expressed as: 

𝐷𝑅𝐿
𝛼 𝑓(𝑡) =

1

Γ(𝑛−𝛼)

𝑑𝑛

𝑑𝑡𝑛 ∫ (𝑡 − 𝑡)𝑛−𝛼−1𝑡

𝑎
𝑓(𝜏)𝑑𝜏  (5) 

where 𝛼 is a positive real number, 𝑛 = ⌈𝛼⌉, and 𝛤(𝑛) is the 

gamma function [8]. This Caputo definition is obtained 

through the modification of the Riemann-Liouville 

derivative. Compared with the RL derivative, it has an 

advantage—it satisfies certain initial conditions of 

fractional-order differential Equations, which might cause 

issues in the RL case. However, sometimes these derivatives 

encounter notable differences when applied to real or 

imaginary quantities. Defined in terms of left differential 

operators, the Caputo fractional-order derivative of a 

function 𝑓(𝑡) is expressed as by Yang and Zhang [8]: 

𝐷𝐶
𝛼𝑓(𝑡) =

1

Γ(𝑛−𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑡

𝑎
𝑓(𝑛)(𝜏)𝑑𝜏,  

𝑛 − 1 < 𝛼 < 𝑛  
(6) 

where 𝛼 is a positive real number, 𝑛 = ⌈𝛼⌉, and 𝛤(𝑛) is the 

gamma function. For 𝑛 = 1, Equation 6 will be defined as 

7: 

𝐷𝐶
𝛼𝑓(𝑡) =

1

Γ(1−𝛼)
∫ (𝑡 − 𝜏)−𝛼𝑡

𝑎
𝑓′(𝜏)𝑑𝜏  (7) 

where 0 < 𝛼 < 1. Now, the discrete Caputo derivate 

Equation is defined [9, 10]: 

∆𝐶
𝛼𝑥(𝑘) =

1

Γ(1−𝛼)
∑ (𝑘 − 𝑗 − 1)−𝛼 𝑥(𝑘 − 𝑗)𝑘−1+𝛼

𝑗=0   (8) 

The gamma function is crucial in this definition and is 

defined as follows [11]: 

Γ(𝑥) = ∫ 𝑒−𝑡𝑡𝑥−1𝑑𝑡
∞

0
  (9) 

This definition is valid for all real and complex numbers 

except non-positive integers. Here, the gamma function also 

plays a fundamental role. The discrete gamma function for 

a non-negative integer 𝑛 and a real number 𝛼 is defined as 

follows [11]: 

Γ(𝛼 + 𝑛) = ∏ (𝛼 + 𝑘) = (𝛼)(𝛼 + 1)(𝛼 +𝑛−1
𝑘=0

2) … (𝛼 + 𝑛 − 1)  
(10) 

The Mittag-Leffler function, denoted by 𝐸𝛼,𝛽(𝑧) is a special 

function that generalizes the exponential function. It is 

defined as [12]: 

𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘+𝛽)
∞
𝑘=0   (11) 

where 𝑧 is a complex number, 𝛼 and 𝛽 are positive 

parameters, and 𝛤(𝑧) is the gamma function. In 

mathematics and physics, the Mittag-Leffler function is 

widely encountered in various contexts, including fractional 

calculus, rational differential Equations, and probability 
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theory. It is also used for modeling multiple processes with 

memory effects, including viscoelastic materials, fractional-

order systems, and anomalous diffusion. The Mittag-Leffler 

function exhibits interesting properties, such as being an 

entire function for all complex 𝛼 and 𝛽, provided there is a 

branch cut along the negative real axis when 𝛼 ≥ 1. 

Additionally, it possesses several integral representations 

and recurrence relations. This function plays a critical role 

in the analysis and solution of fractional differential and 

integral problems [12]. 

1.2. The Benefits of Using Discrete Caputo Fractional 

Calculus 

Generally, the advantages of the discrete Caputo fractional 

derivative are classified into four classes. Definable Initial 

Conditions: One of the significant advantages of discrete 

Caputo fractional calculus is its ability to define initial 

conditions of fractional differential Equations easily. This 

property is beneficial in the study and solution of such 

Equations because it provides practical methods for solving 

complicated problems. Application to Dynamic System 

Analysis: The discrete Caputo fractional calculus is 

particularly well-suited for analyzing and modeling 

dynamic systems that exhibit memory properties and 

require precise initial conditions. Such an approach serves 

to help the engineers and researchers study the behavior of 

complex systems to analyze and optimize the processes of 

industry and engineering. Control Problems: The discrete 

Caputo fractional calculus also finds its application in 

control problems and systems of artificial intelligence. 

Considering the memory properties and non-Markovian 

behaviors in most of the applications of artificial 

intelligence and control challenges, the use of discrete 

Caputo fractional calculus can help in enhancing and 

optimizing the performance of such systems. Delay 

Differential Equations Modeling: Discrete Caputo 

fractional calculus can be used in modeling and analyzing 

delay differential Equations. This has a great value in 

investigations into the behavior of complex systems 

possessing memory and strange instabilities. 

With its properties, discrete Caputo fractional calculus is 

an efficient and very useful tool in analyzing and modeling 

complex systems that might also be inhomogeneous. The 

methodology has thus been employed in improvements and 

optimizations of many industrial and engineering processes 

[13]. 

1.3. The Overview of Caputo, GL and RL 

These definitions and theories, which have been reviewed 

for analysis and prediction, can be effectively applied to 

complex systems' behavior, such as dynamic systems and 

physical phenomena. All these methods have their specific 

characteristics, advantages, and limitations that need to be 

investigated and compared thoroughly. One of the most 

essential features of Caputo fractional calculus, in 

comparison with the other two definitions, GL and RL, is its 

ability to accurately define the initial conditions. Initial 

conditions can easily be established in Caputo fractional 

calculus, which, very often, simplifies the analysis of 

different problems. Caputo fractional calculus can model 

more realistic and complex issues effectively due to its 

features, such as the ability to define initial conditions and 

its relation with delay differential Equations. Another 

important strong point is that it provides a better 

approximation to real derivatives. Caputo fractional 

calculus generally yields higher precision in estimating real 

derivatives compared to other methods, such as GL and RL. 

Caputo Fractional Calculus typically provides higher 

accuracy in approximating real derivatives compared to its 

alternatives, such as GL and RL. Finally, due to the 

possibility of defining initial conditions and increased 

precision while approximating real derivatives, the Caputo 

fractional calculus can also find wide application in such 

directions as control problems, signal processing, and 

dynamic system analysis [14]. 

1.4. Applications of Caputo in Engineering 

Dynamic Systems Modeling: Caputo fractional calculus 

has a wide range of applications in modeling dynamic 

systems with memory effects, such as viscoelastic materials 

[15], fluid flow in porous media [16], and electrical circuits 

with non-local effects [17]. Certainly, Caputo's fractional 

calculus is preferred for the accurate description of such 

systems because it may capture the memory and hereditary 

properties. 

Control Systems: Applications, including the Caputo 

fractional calculus, can be found in designing controllers for 

control engineering when the dynamics of such complicated 

systems appear to be fractional. It provides a very successful 

modelling of these systems that belong to local effects. Due 

to this fact, it provides highly efficient control strategies, 

achieving robust performance in numerous industrial 

processes and systems. 

Signal Processing: Caputo fractional calculus finds its 

application in signal processing for the analysis and 

processing of signals that have long-term memory or non-

local dependencies. It provides tools for characterizing the 

behavior of signals in communication systems, biomedical 

signal analysis, image processing, and pattern recognition, 

among other areas [21]. 

Mechanical Engineering-Materials Science: Fractional 

calculus, as introduced by Caputo, is utilized in modeling 

the viscoelastic behavior of materials, such as polymers and 

biological tissues, which exhibit complex rheological 

properties, in the fields of mechanical engineering and 

materials science. This will enable engineers to predict the 

material response under various loading conditions, and 

therefore design structures for improved durability and 

performance [22]. 

Heat and Mass Transfer: Heat and mass transport 

phenomena in porous media, fractal geometries, composite 

materials, etc., have also been investigated with the Caputo 

fractional calculus. It enables modeling of non-Fickian 

diffusion and anomalous transport behavior, contributing to 

the optimization of heat exchangers, filtration systems, and 

other diffusion-controlled processes [23]. 
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Renewable Energy Systems: Caputo fractional calculus in 

renewable energy engineering contributes to modeling and 

optimizing the performance of renewable energy systems, 

including photovoltaic panels, wind turbines, and energy 

storage devices. In this context, accounting for the non-local 

nature of energy conversion processes allows engineers to 

increase the efficiency and reliability of renewable energy 

technologies [24-29]. 

In general, Caputo fractional calculus has become an 

effective tool in engineering fields for modeling complex 

problems of memory, non-locality, and fractional dynamics, 

generating applications in the enhancement of system 

modeling and control, signal processing, materials science, 

and renewable energy. 

1.5. A Comparison of Fractional Calculus 

Finally, in this section, for the sake of clarity regarding the 

advantages and disadvantages of each method discussed, 

comparisons have been made across three perspectives: 

accuracy, initial conditions, and applications, with a 

comprehensive comparison [9]. 

Accuracy: 

• Caputo: Caputo fractional calculus typically provides 

better approximations of real derivatives, especially for 

functions with significant deviations. 

• GL: GL fractional calculus may have lower accuracy 

in approximating real derivatives, particularly for 

functions with sharp deviations. 

• RL: RL fractional calculus also approximates real 

derivatives but may struggle to capture specific features 

accurately. 

Initial Conditions: 

• Caputo: Caputo fractional calculus naturally 

incorporates initial conditions, making it suitable for 

problems with well-defined initial values. 

• GL: GL fractional calculus does not inherently include 

initial conditions and may require additional 

adjustments or techniques to handle them. 

• RL: RL fractional calculus does not directly 

incorporate initial conditions, potentially complicating 

the analysis of specific problems. 

Applications: 

• Caputo: Caputo fractional calculus finds widespread 

use in engineering and scientific applications due to its 

versatility and ability to model various systems 

accurately. 

• GL: GL fractional calculus is often preferred for its 

simplicity in numerical computations and is suitable for 

problems where initial conditions are not critical. 

• RL: RL fractional calculus has theoretical advantages 

in specific applications, particularly in problems 

involving integral transforms, but may be less practical 

for numerical calculations. 

In this article, the content is divided into four sections: (2) 

Review of necessary preliminaries, (3) Novel approach to 

Lyapunov stability analysis for discrete Caputo, (4) 

Examination of results and examples, and (5) Overall 

summary of the article. 

2. Preliminaries 

In this section, the introductory relations in the domains of 

continuous and discrete time will first be introduced. 

The Young Inequality Theory 

Young's inequality is introduced here and plays a 

significant role in proving power law inequalities [30]. 

Lemma 1: For any 𝑎, 𝑏 ≥ 0, if 𝑝, 𝑞 > 1 are such that 
1

𝑝
+

1

𝑞
= 1, Then: 

𝑎𝑏 ≤
1

𝑝
𝑎𝑝 +

1

𝑞
𝑏𝑞  (12) 

where equality holds if and only if 𝑎𝑝 = 𝑏𝑞. 

3. Novel Approach to Lyapunov Stability 
Analysis for Discrete Caputo 

Stability of dynamical systems is a very critical activity 

within the domain of applied mathematics and engineering. 

Among the standard approaches for system stability 

analysis, the Lyapunov theory has gained significant 

importance. In this paper, the stability of discrete Caputo 

fractional-order systems will be investigated based on 

Lyapunov stability theory. In the previous sections, some 

fundamental aspects of fractional-order dynamical systems 

have been introduced. This section tries to provide the proof 

of stability for such systems. Finally, based on Lyapunov 

theory, discrete Caputo systems are deeply analyzed, and 

stability is established. 

3.1. Lyapunov Stability for Fractional-Order Systems 

To examine the stability of discrete fractional-order 

dynamical systems, the Lyapunov function is commonly 

employed. Consider the following discrete fractional-order 

system given by Gajic Qureshi [31]: 

Δ𝛼𝑥[𝑘] = 𝑓(𝑥[𝑘]),   𝑥[𝑘] ∈ ℝ𝑛 ,   0 < 𝛼 ≤ 1  (13) 

where Δ𝛼  denotes the discrete Caputo fractional difference 

of order 𝛼. A function 𝑉: ℝ𝑛 → ℝ is a Lyapunov function 

for the given discrete fractional-order system if it satisfies 

the following conditions [31]: 

❖ 𝑉(𝑥[𝑘]) > 0 for all 𝑥[𝑘] ≠ 0 and 𝑉(0) = 0. 

❖ The forward difference of 𝑉 along the trajectories of the 

system, i.e., 𝛥𝑉(𝑥[𝑘]) = 𝑉(𝑥[𝑘 + 1]) − 𝑉(𝑥[𝑘]), is 

negative semi-definite. 

Theorem: 

Let 𝑥(𝑘) ∈ 𝑅 be a real-valued discrete time function. 𝜇 =
𝑚

𝑛
≥ 1, where 𝑚 > 0 is an even number and 𝑛 ∈ 𝑁+, Then, 

for any discrete time instant 𝑘 ≥ 1, The following holds: 
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∆𝐶
𝛼 𝑥𝜇(𝑘) ≤ 𝜇 𝑥𝜇−1(𝑘) ∆𝐶

𝛼  𝑥(𝑘)      ∀ 𝛼(0,1)  (14) 

Proof: 

Now, the goal is to prove the following Equation: 

∆𝐶
𝛼 𝑥𝜇(𝑘) − 𝜇 𝑥𝜇−1(𝑘) ∆𝐶

𝛼 𝑥(𝑘) ≤ 0    ∀ 𝛼(0,1)  (15) 

Let us define the auxiliary variable 𝔇(𝑘) = ∆𝐶
𝛼 𝑥𝜇(𝑘) −

𝜇 𝑥𝜇−1(𝑘) ∆𝐶
𝛼 𝑥(𝑘). Now, having the discrete Caputo 

derivative relation in Equation 8, the relation can be 

obtained for  𝑥𝜇(𝑘). 

∆𝐶
𝛼 𝑥𝜇(𝑘) =

1

Γ(1−𝛼)
∑ (𝑘 − 𝑗 −𝑘−1+𝛼

𝑗=0

1)−𝛼  𝑥𝜇(𝑘 − 𝑗)  

(16) 

Similarly, it can be obtained that: 

𝜇 𝑥𝜇−1(𝑘)∆𝐶
𝛼𝑥(𝑘) =

1

Γ(1−𝛼)
∑ (𝑘 − 𝑗 −𝑘−1+𝛼

𝑗=0

1)−𝛼 𝜇 𝑥𝜇−1(𝑘) 𝑥(𝑘 − 𝑗)  
(17) 

By replacing the two above Equations in Equation 15, 

Equation 18 can be obtained: 

𝔇(𝑘) =
1

Γ(1−𝛼)
∑ (𝑘 − 𝑗 − 1)−𝛼   𝑥𝜇(𝑘 −𝑘−1+𝛼

𝑗=0

𝑗) −
1

Γ(1−𝛼)
∑ (𝑘 − 𝑗 −𝑘−1+𝛼

𝑗=0

1)−𝛼 𝜇 𝑥𝜇−1(𝑘) 𝑥(𝑘 − 𝑗) ≤ 0  

(18) 

By factoring out standard terms from Equations 18, it will 

be simplified to Equation 19. 

𝔇(𝑘) =
1

Γ(1−𝛼)
∑ (𝑘 − 𝑗 − 1)−𝛼  𝑘−1+𝛼

𝑗=0 [ 𝑥𝜇(𝑘 −

𝑗) −  𝜇 𝑥𝜇−1(𝑘) 𝑥(𝑘 − 𝑗)] ≤ 0  
(19) 

Now, to further develop the simplification of Equation 19 

and utilizing young inequality, it can be proven that: 

 𝑥𝜇−1(𝑘) 𝑥(𝑘 − 𝑗) ≤
| 𝑥𝜇−1(𝑘)|. | 𝑥(𝑘 − 𝑗)| = 𝑎. 𝑏  

(20) 

By substituting Equation 20 into Equation 12, it will be 

obtained that: 

𝑎𝑏 ≤
1

𝑝
𝑎𝑝 +

1

𝑞
𝑏𝑞  

=
𝜇−1

𝜇
| 𝑥𝜇−1(𝑘)|

𝜇

𝜇−1 + 
1

𝜇
| 𝑥(𝑘 − 𝑗)|𝜇  

=
𝜇−1

𝜇
| 𝑥

𝑚−𝑛

𝑛 (𝑘)|

𝑚

𝑚−𝑛
+ 

1

𝜇
| 𝑥(𝑘 − 𝑗)|

𝑚

𝑛   

=
𝜇−1

𝜇
 𝑥𝜇(𝑘) + 

1

𝜇
 𝑥𝜇(𝑘 − 𝑗)  

(21) 

With simplification you have that: 

 𝑥𝜇−1(𝑘) 𝑥(𝑘 − 𝑗) ≤  𝑥𝜇(𝑘) −
1

𝜇
 𝑥𝜇(𝑘) +

 
1

𝜇
 𝑥𝜇(𝑘 − 𝑗)  

(22) 

In accordance with mathematical rules, it is possible to 

multiply both sides of Equation 22 by 𝜇. 

𝜇 𝑥𝜇−1(𝑘) 𝑥(𝑘 − 𝑗) ≤ 𝜇 𝑥𝜇(𝑘) −  𝑥𝜇(𝑘) +
 𝑥𝜇(𝑘 − 𝑗)  

(23) 

Then: 

𝜇 𝑥𝜇−1(𝑘) 𝑥(𝑘 − 𝑗) ≤ (𝜇 − 1) 𝑥𝜇(𝑘) +
 𝑥𝜇(𝑘 − 𝑗)  

(24) 

By replacing the above Equation in 19: 

𝔇(𝑘) =
1

Γ(1−𝛼)
∑ (𝑘 − 𝑗 − 1)−𝛼𝑘−1+𝛼

𝑗=0 (1 −

𝜇) 𝑥𝜇(𝑘) ≤ 0  
(25) 

According to the rules of sigma notation, when is 𝑎 scalar, 

∑ 𝑎𝑗 
𝑗  is equivalent to 𝑎 ∑ 𝑗𝑗 . 

𝔇(𝑘) =
1

Γ(1−𝛼)
 (1 − 𝜇) 𝑥𝜇(𝑘) ∑ (𝑘 − 𝑗 −𝑘−1+𝛼

𝑗=0

1)−𝛼 ≤ 0  
(26) 

For simplicity in determining the sign, the above 

relationship can be divided into two parts: 
1

Γ(1−𝛼)
 (1 −

𝜇) 𝑥𝜇(𝑘), Due to the condition set for 𝜇, this semester has a 

negative sign. Now, if the following relation is positive, the 

general relation Equation 15 can be proved. 

∑ (𝑘 − 𝑗 − 1)−𝛼 𝑘−1+𝛼
𝑗=0 ≥ 0  (27) 

Due to the larger magnitude of 𝑘 compared to 𝑗, Equation 

(27) will always be non-negative. Thus, Equation 15 will 

always be less than or equal to zero. According to 

Lyapunov's stability theory, given that the candidate 

Lyapunov function is positive-definite and the fractional 

order discrete Caputo derivative of the candidate Lyapunov 

function is negative semi-definite, it will be proven that the 

system is stable in the Lyapunov sense. The image of 

Equation 27 is presented in Figure 1, illustrating the positive 

value of Equation 27. 

As shown in the figure, with an increase in 𝛼, the output 

approaches zero. However, for all values of 0 < 𝛼 < 1, the 

result remains positive. 

3.2. Properties of Discrete Derivate Caputo: 

According to the essential properties of the fractional order 

Caputo derivative in the continuous domain, such as 

linearity and a constant number derivative, the aim here is 

to investigate these two necessary and practical 

characteristics of the Caputo derivative in the discrete 

domain. The linearity and constant derivative properties of 

the Caputo derivative offer several advantages, particularly 

in the context of solving differential Equations and 

modeling real-world phenomena. 

1- Linearity: The Caputo derivative in the discrete domain 

obey linearity, meaning that for constant 𝜓 and 𝛿 and 

function 𝑓(𝑘) and 𝑔(𝑘), it satisfies:  

∆𝐶
𝛼[𝜓𝑓(𝑘) + 𝛿𝑔(𝑘)] = 𝜓∆𝐶

𝛼𝑓(𝑘) + 𝛿∆𝐶
𝛼𝑔(𝑘)  (28) 
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On other hand, we know ∆𝑥(𝑘) = 𝑥(𝑘) − 𝑥(𝑘 − 1). By 

substitution and simplification, Equation 28 will be 

obtained. 

∆𝐶
𝛼[𝜓𝑓(𝑘) + 𝛿𝑔(𝑘)] =

1

Γ(1−𝛼)
∑ (𝑘 − 𝑗 −𝑘−1+𝛼

𝑗=0

1)−𝛼 ∆(𝜓𝑓(𝑘) + 𝛿𝑔(𝑘)) =
𝜓

Γ(1−𝛼)
∑ (𝑘 −𝑘−1+𝛼

𝑗=0

𝑗 − 1)−𝛼 ∆𝑓(𝑘) +
𝛿

Γ(1−𝛼)
∑ (𝑘 − 𝑗 −𝑘−1+𝛼

𝑗=0

1)−𝛼 ∆𝑔(𝑘) = 𝜓∆𝐶
𝛼𝑓(𝑘) + 𝛿∆𝐶

𝛼𝑔(𝑘)  

(29) 

The linearity property of the discrete Caputo, as stated in 

Equation 28, has been proven. The linearity property of the 

discrete Caputo fractional calculus has led to unique 

characteristics in the discretized Caputo formulation, some 

of which are listed below [9]: 

Simplification of Calculations: Linearity allows for the 

superposition principle, meaning that the derivative of a 

sum of functions is the sum of their derivatives. This 

property simplifies the process of solving differential 

Equations because it allows for the breaking down of 

complex problems into simpler parts. 

 

Figure 1. The output of Equation 27

Analytical Solutions: Many physical systems and 

processes can be described as linear combinations of 

simpler functions. The linearity of the Caputo derivative 

helps in finding analytical solutions to these problems. 

2- Derivative of a Constant: For a constant function 𝐶, 

the discrete fractional derivative is zero: ∆𝐶
𝛼[𝐶] = 0. 

∆𝐶
𝛼[𝐶] =

1

Γ(1−𝛼)
∑ (𝑘 − 𝑗 − 1)−𝛼 ∆𝐶𝑘−1+𝛼

𝑗=0 = 0  (30) 

With respect to ∆𝐶 = 0, it is proven that the constant 

number derivative of discrete Caputo is equal to zero, 

similar to the integer order derivative and continuous 

Caputo. The advantage of the constant derivative in the 

Caputo derivative for engineering has several aspects: 

Accurate Modeling: In many engineering problems, the 

initial conditions of systems play a crucial role in analysis 

and design. The Caputo derivative, with its transparent and 

independent initial conditions from higher-order 

derivatives, allows for more accurate modeling of system 

behaviors. 

Determining Equilibrium Points: In the stability analysis 

of engineering systems, constants represent equilibrium 

points. The fact that the derivative of a constant in Caputo 

is zero facilitates a more straightforward and accurate 

stability analysis of these points. 

Predicting Long-term Behavior: Given this property, 

engineers can better predict the long-term behavior of 

systems and design more robust solutions. 

Connection with Classical Differential Equations: 

Many engineers are familiar with classical differential 

calculus. The property of the constant derivative in Caputo, 

which is similar to classical differential calculus, makes the 

transition to using fractional models more straightforward 

and more understandable. 

The Caputo derivative finds significant application in 

modeling complex materials and systems. One area of 

application lies in modeling viscoelastic materials, which 

exhibit properties that depend on their stress and strain 

history. The constant derivative and linearity of the Caputo 

derivative facilitate more accurate modeling and improved 

simulation of the behaviors of such materials. Additionally, 

in the realm of complex dynamic systems characterized by 

nonlinear behaviors, the utilization of the Caputo derivative 

provides engineers with enhanced analytical and design 

tools. By leveraging its inherent properties, the Caputo 

derivative enables a deeper understanding and more 

effective manipulation of these systems, contributing to 

advancements in various engineering domains. 

3.3. The Specific Features of This Article 

The primary objective of this article is to propose a general 

approach for proving stability in both integer-order and 

fractional-order discrete Caputo systems. This implies that 

the established stability can be utilized for all 𝜇. The 

approach is based on the practicality of the theory presented 

in modeling and particularly in control engineering design. 

The presented method ensures that discrete Caputo 

fractional calculus can be employed in practical engineering 
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systems with any degree of freedom. The article's approach 

establishes this assurance through a simple lemma (Yang's 

lemma), making the proof of discrete Caputo usage very 

straightforward and among the shortest engineering paths, 

without needing deep and complex mathematical 

definitions, theories, or lemmas. One of the most essential 

features of this article is its simplicity in design and 

applicability in both integer and fractional-order systems, 

which will enhance flexibility in designing various 

controllers. 

4. Example and Result 

In this section, the aim is to prove and demonstrate the 

claims made in previous sections. In this regard, studies are 

divided into two parts: theoretical reviews and simulation 

studies (in MATLAB). Initially, the focus will be on 

examining three theoretical examples of stability proofs. 

The use of discrete-time Caputo fractional calculus has been 

extensively studied and applied in various references for 

modeling and analysis of systems [32-34]. 

4.1. Theoretical examples 

The aim here is to analyze and verify the stability of a 

discrete-time fractional-order system. Where three 

examples will be examined. 

Example 1: Take the following nonlinear discrete system 

model into consideration: 

∆𝐶
𝛼|𝑥(𝑘 + 1)| = −𝑓(𝑘)  (31) 

where 𝑓(𝑘) = |𝑠𝑖𝑛 (𝑘)|. The Lyapunov candidate function 

is defined with a specific condition of positivity as follows 

𝑉(𝑘) = |𝑥(𝑘 + 1)|. Taking the fractional discrete Caputo 

derivative of both sides of the Lyapunov candidate function 

Equation 32 yields: 

∆𝐶
𝛼𝑉(𝑘) ≤ ∆𝐶

𝛼|𝑥(𝑘 + 1)|  (32) 

Substituting 𝑓(𝑘) into Equation 31 and then substituting 

the result into Equation 32, the following expression is 

derived: 

∆𝐶
𝛼𝑉(𝑘) ≤ −|𝑠𝑖𝑛 (𝑘)| ≤ 0  (33) 

Negativity of the derivative of the Lyapunov candidate 

function implies stability in the Lyapunov sense. 

Remark 1: Equation 14 is considered for the most 

common case where 𝜇 = 2, which can be highly significant 

in proving the stability of control systems. 

∆𝐶
𝛼 𝑥2(𝑘) ≤ 2𝑥(𝑘) ∆𝐶

𝛼 𝑥(𝑘)    ∀ 𝛼(0,1)  (34) 

𝜇 = 2 is a particular case of Equation 14, which can be used 

as a predefined positive function to prove stability in the 

Lyapunov sense. 

Example 2: Examine the nonlinear system model: 

∆𝐶
𝛼𝑥1(𝑘) = −𝑠𝑖𝑛2(𝑘)𝑥1(𝑘) −

𝑠𝑖𝑛(𝑘) 𝑐𝑜𝑠(𝑘)𝑥2(𝑘)  

∆𝐶
𝛼𝑥2(𝑘) = − 𝑠𝑖𝑛(𝑘) 𝑐𝑜𝑠(𝑘)𝑥1(𝑘) −

𝑐𝑜𝑠2(𝑘)𝑥2(𝑘)  

(35) 

The Lyapunov function is defined as Equation 36, subject 

to a positivity condition. 

𝑉(𝑥1(𝑘), 𝑥2(𝑘)) =
1

2
𝑥1

2(𝑘) +
1

2
𝑥2

2(𝑘)  (36) 

By taking the discrete Caputo fractional derivative of both 

sides of Equation 36 and substituting the proven 

relationship Equation 34, Equation 37 will be defined.  

∆𝐶
𝛼𝑉(𝑥1(𝑘), 𝑥2(𝑘)) ≤  𝑥1(𝑘)∆𝐶

𝛼𝑥1(𝑘) +
𝑥2(𝑘)∆𝐶

𝛼𝑥2(𝑘)  
(37) 

Now, by substituting Equation 35 into Equation 37, 

Equation 38 is derived. 

∆𝐶
𝛼𝑉(𝑥1(𝑘), 𝑥2(𝑘)) ≤  𝑥1(𝑘)(−𝑠𝑖𝑛2(𝑘)𝑥1(𝑘) −

𝑠𝑖𝑛(𝑘) 𝑐𝑜𝑠(𝑘)𝑥2(𝑘)) +
𝑥2(𝑘)(− 𝑠𝑖𝑛(𝑘) 𝑐𝑜𝑠(𝑘)𝑥1(𝑘) − 𝑐𝑜𝑠2(𝑘)𝑥2(𝑘))  

(38) 

Simplification yields the computation as follows: 

∆𝐶
𝛼𝑉(𝑥1(𝑘), 𝑥2(𝑘)) ≤  −(𝑠𝑖𝑛(𝑘) 𝑥1(𝑘) +

𝑐𝑜𝑠(𝑘)𝑥2(𝑘))
2

≤ 0  
(39) 

According to Equation 39, the system is stable. 

Example 3: Consider the nonlinear discrete system model: 

𝑋(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)  

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘)  
(40) 

In the state-space model written in 40, A and B are 

nonlinear functions. In this example, the objective is 

initially to design a fractional-order Caputo controller and 

then prove the stability of the control law. The error signal 

and the sliding surface are defined in Equation 41. 

𝑒(𝑘 + 1) = 𝑥(𝑘 + 1) + 𝑥𝑑(𝑘 + 1)  

𝑠(𝑘) = 𝜆𝑒(𝑘) + ∆𝐶
−𝛼𝑒(𝑘 + 1)  

(41) 

In this context, the objective is to design a controller based 

on fractional calculus and prove the stability of the control 

law. Next, the fractional discrete Caputo derivative is 

applied to both sides of the sliding surface. 

∆𝐶
𝛼𝑠(𝑘) = 𝜆∆𝐶

𝛼𝑒(𝑘) + 𝑒(𝑘 + 1) =
−𝑘𝑠𝑖𝑔𝑛(𝑠(𝑘))  

(42) 

On one hand, one of the properties of the discrete and 

continuous Caputo derivative is equal to ∆𝐶
𝛼(∆𝐶

−𝛼𝑓(𝑘)) =
𝑓(𝑘). By substituting Equation 41 into Equation 42 and 

performing the necessary simplifications, Equation 43 will 

be defined. 
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𝑢(𝑘) = −𝐵−1 (𝜆∆𝐶
𝛼𝑒(𝑘) + 𝑘𝑠𝑖𝑔𝑛(𝑠(𝑘)) +

𝐴𝑥(𝑘) − 𝑥𝑑(𝑘 + 1))  
(43) 

The stability of the specified sliding surface is analyzed in 

the subsequent step. A Lyapunov function, satisfying the 

positivity condition, is introduced and expressed in 

Equation 44. 

𝑉(𝑘) =
1

2
𝑠2(𝑘)  

(44) 

By taking the discrete Caputo fractional derivative of both 

sides of Equation 44 and substituting the proven 

relationship Equation 34, Equation 45 will be defined.  

∆𝐶
𝛼𝑉(𝑘) ≤  𝑠(𝑘)∆𝐶

𝛼𝑠(𝑘)  
(45) 

Now, by substituting Equation 42 into Equation 45, 

Equation 46 is obtained. 

∆𝐶
𝛼𝑉(𝑘) ≤  𝑠(𝑘) (−𝑘𝑠𝑖𝑔𝑛(𝑠(𝑘)))  

∆𝐶
𝛼𝑉(𝑘) ≤ −𝑘|𝑠(𝑘)|  

(46) 

It is stable in the Lyapunov sense. 

Remark 2: One of the most significant challenges in 

modeling and design is ensuring the stability of the designed 

system. Therefore, one of the well-known theories for 

proving stability in nonlinear systems is the Lyapunov 

theory. As theoretically demonstrated, the proven 

relationship in Equation 14 can easily assist in proving 

Lyapunov stability. This allows for the use of the discrete 

Caputo fractional calculus in system design and modeling, 

controller design, etc., besides proving its stability. The 

proof provided in this paper will assure researchers that they 

can use this discrete Caputo calculus to benefit from its 

numerous advantages, which have been extensively 

discussed in the previous sections of the paper regarding its 

properties and wide-ranging applications. 

Remark 3: To examine the claim stated in the article, three 

different theoretical examples have been studied: Example 

1: Proof of the approach proposed for a discrete-time 

fractional-order system (applicable to Markov processes). 

Example 2: Proof of the approach proposed for a discrete 

fractional-order system (applicable to time stepping). 

Example 3: Examination of the approach proposed for a 

discrete-time integer-order state space model (relevant to 

Markov processes). Particularly in Example 3, which 

presents a comprehensive form of the system model, the 

practical applicability of the proposed approach in 

controller design is evident. This leads to operational 

freedom, flexibility, and increased stability in the region, 

etc., which have been fully addressed in previous sections. 

4.2. Numerical Examples 

In the previous sections of this article, the theoretical 

aspects of Equation 14 and its properties were proven and 

its applications were examined. In this section, the aim is to 

investigate the proven Equation through simulation in the 

MATLAB software environment, ensuring that Equation 26 

consistently holds true.  

Example 1: Consider Equation 26 (𝔇(𝑘) =
1

Γ(1−𝛼)
 (1 −

𝜇) 𝑥𝜇(𝑘) ∑ (𝑘 − 𝑗 − 1)−𝛼 𝑘−1+𝛼
𝑗=0 ≤ 0) for the widely used 

special case of 𝜇 = 2 and the nonlinear function Equation 

47, which will result in Equation 48. 

𝑥(𝑘 + 1) = 𝑒𝑥𝑝(𝑡𝑎𝑛ℎ(𝑘)+𝑠𝑖𝑛(2∗𝑝𝑖))  (47) 

𝔇(𝑘) =
−1

Γ(1−𝛼)
 (𝑒𝑥𝑝(𝑡𝑎𝑛ℎ(𝑘)+𝑠𝑖𝑛(2∗𝑝𝑖)))

2
∑ (𝑘 − 𝑗 −𝑘−1+𝛼

𝑗=0

1)−𝛼 ≤ 0  

(48) 

Equation 48 was simulated for 𝑘 = 1: 1000, 𝛼 =
0.1: 0.1: 0.9, and the result is shown in Figure 2. 

 

Figure 2. Changes in 𝜶 in Discrete Caputo Fractional Calculus

As shown in Figure 2, the reduction in 𝛼 leads to an 

increase in the stability region, which is also very similar to 

the results obtained using fractional calculus (when 0 <
𝛼 < 1). The stability surface for the function introduced in 

Figure 3 is depicted in three dimensions, indicating an 

increase in the stability region with decreasing 𝛼. 
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Remark 4: In the previous sections, after proving relation 

Equation 14, three theoretical examples and one simulated 

example were presented, all demonstrating the validity and 

applicability of the relation introduced in the paper. In this 

example, after examining the theoretical proof of stability, 

the aim is to illustrate the discrete Caputo fractional 

derivative presented in the paper.  

Example 2: This example is significant in demonstrating 

the application of the presented theory in proving the 

Lyapunov stability for discrete nonlinear systems and 

models. A discrete nonlinear model is considered in 

Equation 31. Where 𝑘 = 1: 3: 300. Where 𝑓(𝑘) =
|∆𝐶

𝛼(𝑠𝑖 𝑛(𝑘))|. The Lyapunov candidate function is defined 

with a specific condition of positivity as follows 𝑉(𝑘) =
|𝑥(𝑘 + 1)|. Taking the fractional discrete Caputo derivative 

of both sides of the Lyapunov candidate function Equation 

49 yields: 

∆𝐶
𝛼𝑉(𝑘) ≤ ∆𝐶

𝛼|𝑥(𝑘 + 1)| = −|∆𝐶
𝛼(𝑠𝑖𝑛 (𝑘))| ≤ 0  

(49) 

Negativity of the derivative of the Lyapunov candidate 

function implies stability in the Lyapunov sense. Here, the 

goal is to demonstrate ∆𝐶
𝛼𝑉(𝑘) ≤ 0 in the simulation, which 

represents the time plot of ∆𝐶
𝛼𝑉(𝑘), the results of which are 

shown in Figure 4. 

As indicated in Figure 4, the stability level increases with 

a decrease in 𝛼. 

Example 3: Consider Equation 26 (𝛽(𝑘) =
1

Γ(1−𝛼)
 (1 −

𝜇) 𝑥𝜇(𝑘) ∑ (𝑘 − 𝑗 − 1)−𝛼 𝑘−1+𝛼
𝑗=0 ≤ 0) for the widely used 

special case of 𝜇 = 4 and the nonlinear function Equation 

47, which will result in Figure 5. 

Example 4: In this section, the fractional-order mass-

spring-damper system model is defined as (𝐹 =
𝑚 ∆𝐶

2  𝑋(𝑘) + 𝑐 ∆𝐶
𝛼 𝑋(𝑘) + 𝑘 𝑋(𝑘)). The model is 

simulated for a unit step input, and its stability region for 

𝛼 = 0.9 is depicted in Figure 6. Where 𝑚, 𝑐, 𝑘 = 1, 0.4, 2 

are mass, damping coefficient, and spring constant, 

respectively. 

Stability: The Lyapunov candidate function is defined 

with a specific condition of positivity as follows 𝑉(𝑘) =
0.5 𝑋(𝑘)2. Taking the fractional discrete Caputo derivative 

of both sides of the Lyapunov candidate function Equation 

50 yields: 

∆𝐶
𝛼𝑉(𝑘) ≤ 𝑋(𝑘) ∆𝐶

𝛼 𝑋(𝑘) ≤ 0  (50) 

 

Figure 3. Three dimensions in Equation 48 (𝕯(𝒌))

 

Figure 4. The time plot of ∆𝑪
𝜶𝑽(𝒌)
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Figure 5. Three dimensions in 𝜷(𝒌) 

 

Figure 6. The time plot of 𝑿(𝒌) ∆𝑪
𝜶 𝑿(𝒌) 

Remark 5: The mass-spring-damper model serves as an 

analytical and simulation tool in various engineering fields. 

For instance, Chaotic Systems: When specific conditions 

are met for a mass-spring-damper system, it can transform 

into a chaotic system where small inputs lead to complex 

and unpredictable outputs. Vibratory Systems: This model 

can be applied to analyze vibratory systems, such as 

standard systems like fans or mechanical machines with 

oscillatory motions. Thermal-Energy Systems: In some 

cases, this model can be compared with systems related to 

heat transfer and thermal energy, such as thermal models 

that simulate temperature changes and heat transfer. Control 

Systems: In control engineering, the mass-spring-damper 

model is used to analyze the response of control systems to 

external inputs and noise, especially in studying dynamic 

response and robustness. Automotive Systems: In the design 

and optimization of automotive suspension systems, 

including travel and suspension systems, the mass-spring-

damper model is utilized for simulating and optimizing 

vibrations. Mechanical and Industrial Systems: In the 

analysis and design of mechanical equipment such as 

industrial steering and suspension systems, this model is 

used to study dynamic response and vibrations. Energy 

Systems: In the study and optimization of energy generation 

systems, such as turbines, the mass-spring-damper model is 

used to model vibrations and dynamic responses. Electronic 

Systems: In the design and development of electronic 

systems prone to mechanical vibrations, this model is used 

to investigate the effects of vibrations on system 

performance. Structural Systems: In the analysis and 

optimization of structures and building systems, such as 

bridges and high-rise buildings, this model is used to 

simulate the dynamic behavior and vibrations of structures. 

These explanations illustrate that the mass-spring-damper 

model is a powerful tool extensively used in the analysis and 

optimization of various engineering systems, highlighting 

its significant importance in the design and optimization of 

complex systems. 

Remark 6: In order to substantiate the claims made, two 

simulation examples have been presented in this section. 

In Examples 1 and 2, the effects of variations in the 

fractional-order Caputo derivative for discrete-time 

systems (applicable to Markov processes) of both integer 

and fractional orders are clearly demonstrated in the 

figures above. Example 3 shows the validity of the proven 

relationship for various 𝜇, which can be particularly 

applicable in high-degree engineering systems. The results 

indicate the practical applicability of this study for discrete 

integer-order and fractional-order systems for different 𝜇, 

representing the degree of the system model in 

engineering. In Example 4 to demonstrate the relevance of 
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the discrete Caputo fractional-order approach in proving 

stability for engineering systems, this example utilizes a 

mass-spring-damper system, and its stability region is 

shown in the figure. 

5. Conclusion 

A tailored discrete Lyapunov stability approach was 

employed in this work for the first time to analyze the 

stability of Caputo fractional-order systems. To achieve this 

objective in developing a specialized approach to that class 

of systems, effectiveness is demonstrated from both 

theoretical and numerical perspectives. Indeed, simulation 

results are provided herein and demonstrate theoretically 

and numerically how this method can constitute a strong 

tool within a wide range of applications concerning the 

problem at hand, specifically in the setting of discrete 

fractional-order systems analysis and stability. This method 

has great potential to contribute to the development of 

control theory and dynamical systems in the context of 

fractional calculus. Therefore, it is believed that this 

research can pave the way for further studies and practical 

applications in related fields. 
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