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Abstract: 

The assessment of clustering methods is crucial for identifying the primary characteristics of 

joints in mining and rock engineering. Orientation is commonly used to characterize the 

deformation patterns and mechanical properties of rock formations. This study introduces an 

enhanced clustering method by integrating the Harmony Search (HS) and Particle Swarm 

Optimization (PSO) algorithms to classify joint sets based on orientation parameters—namely, 

dip and dip direction—in the Sungun copper mine.  First, joint characteristics were clustered using 

K-means and Fuzzy C-means (FCM) techniques. The elbow method was applied to determine 

the optimal number of clusters, resulting in a four-cluster classification. Subsequently, both K-

means and FCM were optimized using HS and PSO algorithms, and the joint data were evaluated 

based on three clustering quality criteria: the Davies-Bouldin index (DBI), the Calinski-Harabasz 

index (CHI), and the Silhouette coefficient (SI).  The results showed that the FCM-PSO method 

achieved the highest ranking, yielding a DBI of 0.80, a CHI of 348.47, and an SI of 0.565. In 

contrast, integrating the HS algorithm with K-means and FCM did not improve clustering 

performance as expected. Furthermore, the K-means-PSO method performed worse than the 

FCM clustering approach, ranking third overall.  Based on these findings, the FCM-PSO method, 

by effectively optimizing cluster centers, provides a reliable approach for classifying joint sets. 

The proposed method can be effectively applied in rock mass behavior analysis for large-scale 

open-pit mines such as the Sungun copper mine. The FCM-PSO method achieved the best results 

with DBI=0.80, CHI=348.47, and Silhouette=0.565. 
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1. Introduction 

Rock joints play a crucial role in determining the stability 

of rock masses. The primary characteristics of joints, which 

include orientation and spacing, are key factors in assessing 

rock deformation and strength [1]. Due to long-term 

stochastic geological processes, the spatial distribution of 

joints tends to exhibit a complex and random pattern [2]. 

Clustering analysis allows for the classification of these 

randomly distributed joints into dominant groups within a 

defined geological domain. By analyzing joint 

characteristics, engineers can evaluate rock mass stability. 

Therefore, clustering analysis of rock joints is critical in 

rock engineering stability assessments. Historically, two 

principal approaches have been adopted to identify joint 

sets. The first involves clustering joints based solely on 

orientation, while the second considers additional joint 

features alongside orientation. The dip and dip direction 

significantly affect the stability of dam foundations, tunnel 

linings, and slope benches in mining operations. Thus, the 

application of clustering techniques that incorporate 

multiple joint characteristics is essential and particularly 

suited for engineering applications. Traditional grouping of 

joints often relies on graphical methods such as 

stereographic pole plots, rose diagrams, and equal density 

plots [3, 4]. While intuitive, these methods are highly 

sensitive to subjective bias and the experience of the 

analyst, limiting their ability to reliably classify widely 

dispersed joints. To overcome these limitations, automated 

clustering techniques have been developed to objectively 

identify joint sets. Clustering analysis is a robust statistical 

method for resolving classification problems. Its objective 

is to identify intra-group similarities and inter-group 

differences. This method is widely utilized across various 

disciplines, including data mining, pattern recognition, 

information retrieval, microbiological analysis, and 

machine learning [5]. Shanley and Mahtab [6] were the first 

to apply clustering techniques for rock joint classification. 

https://cste.journals.umz.ac.ir/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
https://foreign.umz.ac.ir/
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Since then, numerous clustering approaches have been 

developed, including K-means [7, 8], Fuzzy C-means 

(FCM) [9, 10], Spectral Clustering [11, 12], and Affinity 

Propagation (AP) [13]. Both K-means and FCM are 

sensitive to the initial placement of cluster centres and prone 

to converging at local optima. To address this challenge, 

researchers have proposed various solutions to improve the 

initialization of cluster centres [3, 14-16]. These studies 

provided valuable insights into clustering joints based on 

orientation and related properties. In recent years, several 

researchers have employed soft computing and 

metaheuristic algorithms—such as the Artificial Bee 

Colony (ABC), Mutative Scale Chaos Optimization 

(MSCO), Quantum Particle Swarm Optimization (QPSO), 

Differential Evolution (DE), and Bacterial Foraging 

Optimization Algorithm (BFOA)—to address the 

challenges in determining the mechanical and hydraulic 

characteristics of rock masses [4, 7, 17-22]. Others have 

utilized Support Vector Machines (SVM), Genetic 

Algorithms (GA), and Grey Wolf Optimizer (GWO) for 

clustering or classification tasks in complex geological 

settings [1, 21-23]. Additionally, Ruan et al. [24] applied the 

Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) algorithm for joint set identification, 

achieving better accuracy than FCM by effectively filtering 

out outliers. Wang et al. [25] employed FCM to improve 

prediction accuracy in machine learning models such as 

Support Vector Regression (SVR) and Random Forests. 

Yong et al. [26] integrated the Neutrosophic Genetic 

Algorithm (NGA) with K-means clustering to enhance 

efficiency and practical applicability. Zarean and 

Poormirzaee [27] demonstrated the effectiveness of PSO in 

solving complex geotechnical problems by accurately 

identifying joint orientations. 

Although these efforts have advanced the field, key 

limitations remain. Specifically, many existing models lack 

robustness in heterogeneous field conditions and struggle 

with overlapping joint features. Furthermore, few studies 

have provided multi-index benchmarking under practical 

mining scenarios. 

This study addresses these gaps by integrating PSO and HS 

algorithms with K-means and FCM to improve clustering 

reliability and performance. The methodology is validated 

using three well-established metrics: the DBI, CHI, and SI. 

The proposed approach is applied to real joint orientation 

data from the Sungun copper mine, offering a practical and 

optimized solution for joint set classification in rock 

engineering.  The structure of this paper is as follows: 

Section 2 outlines the data, methodology, and steps of the 

proposed metaheuristic-based clustering framework. 

Section 3 presents a comparative evaluation using the three 

clustering indices. Section 4 concludes with a summary of 

findings. 

2. Materials and Methods 

2.1. Geological Study Area 

The Sungun copper mine is located in East Azerbaijan 

Province, 130 kilometres northeast of Tabriz and 30 

kilometres north of Varzeghan, at 46° 43' E and 38° 42' N 

(Figure 1). 

 

Figure 1. Location of Sungun copper mine 

This mine is located in a mountainous region with an 

average elevation of 2000 meters above sea level. It is  

situated in the northwest of Iran within the global copper 

belt. The Sungun copper deposit is positioned in the 

Urumieh-Dokhtar Magmatic Arc (UDMA), which forms 

part of the Himalayan-Alpine metallogenic belt. This 

monzonitic-type deposit lies within a tectonic belt related to 

a  subduction zone along the continental margin during the 

Tertiary period. The orebody, delineated within the Tafadili 

exploration network, spans approximately one square 

kilometre. High-grade veins are concentrated in the semi-

deep portion of the peripheral monzonite. This classifies it 

as a peripheral-type copper deposit. The surrounding rock 

formations include Upper Cretaceous limestone units and 

andesitic-latitic volcanic sequences (Figure 2). 

The oldest rocks in the area include a 500-meter-thick 

sequence of limestone interbedded with shale, and a 1500-

meter-thick sequence of lava flows. Calc-alkaline andesitic 

dikes intrude the calc-alkaline and tuffaceous rocks [28]. 

Following the emplacement of the quartz monzonite mass, 

magmatic activity resulted in the injection of multiple dyke 

systems. Recent lithological studies indicate three major 

intrusive pulses in the region. The first pulse is associated 

with the Sungun-bearing quartz monzonite, which hosts 

porphyry Cu-Mo mineralization. This was later intruded by 

two younger quartz-bearing units: urite-granodiorite and 

barren diorite. Post-mineralization dykes, mostly trending 

NW-SE and dipping SW (occasionally N-S), have crosscut 

the main mass. 
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Figure 2. The Urumieh-Dokhtar volcanic belt hosts large 

porphyry copper deposits, including the Sungun copper 

deposit, as illustrated in the structural map of Iran 

These are divided into four dyke generations: (a) First-

generation (DK1): Derived from late-stage quartz diorite to 

granodiorite. subdivided into DK1a, DK1b, and DK1c.  (b) 

(DK2): Gabbro-diorite compositions, observed outside the 

main pit.  (c) (DK3): Mainly composed of diorite.  (d) (DK4): 

Latitic to trachyandesitic rocks from the Pliocene-aged 

Chaldaghi dome. These dykes exhibit considerable age 

variations and were excluded from the present study [29]. 

The Chaldaghi subvolcanic dome intrudes the SE margin 

of the Sungun porphyry mass. The latest magmatic activity 

stems from the Calderi Dash Dibi volcano to the SW. 

Pyroclastic deposits and lava flows from this eruption 

overlie the porphyry and later-stage dykes [30]. 

A variety of sulfide and oxide minerals formed during 

mineralization. Copper sulfides include chalcopyrite, 

bornite, chalcocite, and covellite. Other sulfides present are 

pyrite, molybdenite, galena, sphalerite, marcasite, and 

pyrrhotite. Precious metals such as gold and silver exist 

alongside oxides like ilmenite, rutile, magnetite, and 

goethite. The Sungun deposit shows three mineralization 

zones: oxide, supergene, and hypogene (Figure 3). 

The hypogene zone varies from 0 to 200 meters in 

thickness (average: 80 m). The supergene zone ranges 

between 0 and 212 meters (average: 100 m). The entire 

hypogene section is 320 to 500 meters thick, averaging 340 

meters. Sulfur mineralization occurs in supergene and 

hypogene zones. Due to rough topography and the 

proximity of the supergene upper surface to groundwater, 

this zone shows an uneven top surface.  Main alteration 

zones: potassic, propylitic, phyllic, and argillic. Surface and 

shallow zones show strong alteration, with white, cream, 

red, and brown rock colors indicating weathering. 

  

Figure 3.Distribution of subsidence, supergene, and hypogene 

zones in a vertical section of the Sungun copper deposit [31]. 

The color of the Sungun porphyry varies with alteration: 

Greenish-gray to olive in propylitic, light gray to cream and 

white in argillic, light gray to dark in phyllic, Dark gray with 

pink feldspar in potassic. Color index:10 to 35 leucocratic 

natures. Primary minerals: plagioclase (40–45%), 

potassium feldspar (30–35%), amphibole (5–10%), biotite 

(5–10%), and quartz (5–10%) [28]. 

The type of host rocks plays a key role in applying fuzzy 

clustering for joint identification in Sungun. Dominant 

rocks: granodiorite, diorite, and quartz diorite. These are 

suitable for geotechnical studies due to favorable physical 

and mechanical properties. Their igneous nature ensures 

high stability, hardness, and data reliability. Due to 

extensive fracturing and mineralization, they are ideal for 

optimized fuzzy clustering.   

Granodiorite: High hardness; ideal for joint classification. 

Diorite and quartz diorite: Aid in fuzzy analysis due to dense 

mineralogy and structural resistance. 

2.2. Methodology 

Although up to 10 characteristics of joints can be recorded 

in the field, only two key attributes, dip and dip direction, 

are commonly used to identify joint sets. In this study, data 

were collected from 19 benches in the Sungun copper mine 

using a compass clinometer, which is a well-established 

method for structural geological surveys due to its high 

accuracy and direct field applicability. Unlike remote 

sensing techniques like LiDAR or photogrammetry—which 

require post-processing and complex calibration—the 

clinometer method provides real-time, high-resolution 

measurements with minimal instrumental bias. This 

approach resulted in the collection of 376 joint sets (Figure 

4), with each joint characterized by its dip and dip direction. 

(Figure 5) presents the box plots of the collected data. These 

boxplots indicate that some outlier values are present in the 

initial data set, particularly within the dip data. To ensure 

accurate modelling and prevent deviations, it is necessary to 

eliminate these outliers from the database. To systematically 

identify these outliers, the Z-score method was employed, 

which standardizes data points and flags those exceeding a 

predefined threshold (typically |Z| > 3) as outliers. 
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Figure 4.  Joint surface mapping using a compass clinometer 

in the Sungun copper mine 

 

Figure 5. Box plot of collected joint surface data: (a) Dip, (b) 

Dip Direction 

The Z-score statistic was applied to eliminate outlier data. 

The Z-score, also known as the standard score, is a 

statistical measure that quantifies how far a data point 

deviates from the mean of a dataset in terms of standard 

deviations. This method helps determine whether a given 

data point falls within the normal range or qualifies as an 

outlier compared to the rest of the dataset, as defined by the 

following equation [32]: 

𝑧 =
𝑥−𝜇

𝜎
  (1) 

where z Standardized value (Z-score), x Raw data value, μ 

Mean of the dataset, and σ Standard deviation of the dataset. 

Data points exceeding three standard deviations from the 

mean in any given column were identified as outliers and 

subsequently removed. After filtering outliers, a total of 375 

joint set data points remained for analysis. The measured 

parameters are presented in Table 1. 

When analysing the orientation of a joint mathematically, 

it is commonly represented as a pole using the equal-angle 

projection in the upper hemisphere Figure 6. The spatial 

orientation is defined by the dip direction (α), ranging from 

0° to 360°, and the dip angle (β), ranging from 0° to 90°. In 

a Cartesian coordinate system, a unit normal vector eᵢ 

represents the orientation of a joint. This orientation is 

typically characterized by its direction cosines, denoted as 

eᵢ = (xᵢ, yᵢ, zᵢ) [33]. Figure 7 presents a stereographic plot of 

the joint sets in the Sungun copper mine. 

(2) 

𝑥𝑖 = cos 𝛼 sin 𝛽  

𝑦𝑖 = sin 𝛼 sin 𝛽  

𝑧𝑖 = cos 𝛽  

Table 1. Statistical characteristics of input parameters 

Joint features Unit Datasets 
Values 

Maximum Minimum Average Standard deviation 

Dip Degree 375 90 20 65.13 17.82 

Dip direction Degree 375 355 0 177.56 91.76 

2.3. Optimal Number of Clusters 

A crucial aspect of the data clustering process is 

determining the optimal number of clusters, which serves as 

a key input for the clustering algorithm. This study 

employed the Elbow method to identify the appropriate 

number of clusters. The Elbow method is a widely used and 

effective approach for determining the optimal number of 

clusters by analysing the percentage of variance explained 

as a function of the number of clusters. This technique 

suggests selecting the number of clusters until the addition 

of another cluster no longer results in meaningful 

improvements in data modelling. By plotting the percentage 

of variance explained by clusters against the number of 

clusters, it becomes evident that the initial clusters 

contribute significantly to explaining variance. However, 

beyond a certain point, the marginal benefit of adding 

additional clusters diminishes. The elbow criterion is not 

always easily identifiable [34]. The percentage of variance 

is calculated as the ratio of between-group variance to total 

variance, commonly referred to as the F-test, which is 

computed as follows [35]: 

(3) 𝐹 =
∑ (𝑛𝑖(𝑌̅𝑖−𝑌̅))/(𝐾−1)𝑘

𝑖=1

∑ ∑ ((𝑌̅𝑖𝑗−𝑌̅𝑖))/(𝑁−𝐾)
𝑛𝑖
𝑗=1

𝑘
𝑖=1

  

where 𝑖 represents the index of the group, 𝑗 is the index of a 

data point within group 𝑖, 𝑛ᵢ is the number of data points in 

group 𝑖, 𝑌̅ᵢ represents the mean of group 𝑖, 𝑌̅ is the global 

mean of the dataset, 𝑌̅ᵢⱼ is the value of the 𝑗𝑡ℎ data point in 

group 𝑖, 𝐾 is the total number of clusters, and 𝑁 is the total 

number of data points. If the ratio of between-group 
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variability to within-group variability is substantial, this 

index will yield a high value.

 

Figure 6. Representation of vector data in spherical coordinates 

 

Figure 7. Scatter of joint sets data a: Spherical space b: Two-dimensional space equivalent to the upper hemisphere projection 

Scatter of joint sets data: (a) Spherical coordinates, (b) Two-dimensional equivalent of upper hemisphere projection

2.4. K-means clustering method 

The K-means clustering algorithm, first introduced by 

MacQueen in 1967 [36], is one of the most widely used 

methods for data clustering. In this method, if X = {X1, X2, 

..., Xn} represents a dataset and V = {V1, V2, ..., Vc}is a set 

of cluster centres, then each data point is assigned to the 

nearest cluster centre at any given time. Here, 𝑛 represents 

the number of data points, and 𝑐 is the number of clusters. 

The objective of the K-means clustering method is to 

minimize the objective function j(v), which is defined as 

follows:  

(4) 𝑗(𝑣) = ∑ ∑ ‖𝑥𝑖𝑗 − 𝑣𝑗‖
2𝑐

𝑗=1
𝑐
𝑖=1   

where 𝑥ᵢⱼ denotes the value of the 𝑖𝑡ℎ data point with respect 

to the 𝑗𝑡ℎ cluster, 𝑛 is the total number of data points, 𝑐 is 

the total number of clusters, 𝑣ⱼ is the centroid of the 𝑗𝑡ℎ 

cluster, and ‖𝑥ᵢⱼ − 𝑣ⱼ‖² is the squared Euclidean distance 

between data point 𝑥ᵢⱼ and centroid 𝑣ⱼ.The centroid of each 

cluster is determined using the following equation:  

(5) 𝑣𝑖 =
1

𝑐𝑖
∑ 𝑥𝑖𝑗  ,  𝑖 = 1,2, … , 𝑐

𝑐𝑖
𝑗=1   

where 𝑣ᵢ is the centroid of the 𝑖𝑡ℎ cluster, 𝑥ᵢⱼ represents the 

𝑗𝑡ℎdata point in cluster 𝑖, 𝑐ᵢ is the number of data points in 

cluster 𝑖, and 𝑐 is the total number of clusters. The K-means 

clustering algorithm partitions the dataset into 𝐾 clusters by 

initially assigning data points to clusters in a randomized 

manner. In each iteration, the algorithm computes the 

Euclidean distance between each data point and the cluster 

centroid, subsequently reassigning the point to the nearest 

cluster. This iterative process continues until no further 

changes occur in cluster assignments. Figure 8 presents the 

flowchart of the K-means clustering method. 

2.5. Fuzzy C-means (FCM) 

Fuzzy C-means (FCM) is a data clustering algorithm that 

partitions a dataset into 𝑐 clusters, where each data point is 

assigned a specific membership grade for each cluster. This 

method was initially introduced by Dunn [37] and later 

refined by Bezdek et al. [38]. The primary objective of FCM 

is to classify a collection of 𝑛 data points into 𝑐 distinct 
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clusters. The dataset is represented by a matrix A, defined 

as 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} ,where each data point consists of m 

features, expressed as 𝑎𝑖 = {𝑎𝑖
1, 𝑎𝑖

2, … , 𝑎𝑖
𝑚} . Equation (6) 

defines the objective function that guides the clustering 

process. The goal of this function is to minimize the 

Euclidean distance between each data point and its 

corresponding cluster centroid while simultaneously 

maximizing the Euclidean distance between different 

cluster centroids to enhance cluster separability.  

(6) 𝑗(𝑢, 𝑣) = ∑ ∑ (𝑣𝑖𝑘)2(𝑑𝑖𝑘
2 )𝑐

𝑖=1
𝑛
𝑘=1   

where:  𝑣𝑖𝑘 is the degree of membership of the 𝑘𝑡ℎ data point 

(pattern vector  𝑎𝑘) in the 𝑖𝑡ℎ cluster, 𝑛 is the total number of 

data points, 𝑐 is the total number of clusters, 𝑗(𝑢, 𝑐) is the 

total clustering cost (to be minimized) and  𝑑𝑖𝑘
2  is the squared 

Euclidean distance between data point 𝑎𝑘 and cluster 

centroid 𝑐𝑖, which is mathematically defined as: 

(7) 𝑑𝑖𝑘
2 = (𝑎𝑘 − 𝑐𝑖)

𝑇(𝑎𝑘 − 𝑐𝑖) 

𝑎𝑘 is the 𝑘𝑡ℎdata vector (pattern) in the dataset, 𝑐𝑖 is the 

centroid of the 𝑖𝑡ℎcluster, 𝑑𝑖𝑘
2  represents the squared 

Euclidean distance in a multidimensional feature space and 

In Equation 7, the superscript (𝑇) denotes the transpose 

operator, which converts a column vector into a row vector. 

This operation is used to compute the squared Euclidean 

distance through the inner product of the difference vector 

and its transpose. Equations 8 and 9 are used to iteratively 

update the cluster centers and the membership matrix in the 

FCM algorithm. Specifically, Equation 8 calculates the 

centroid 𝑐𝑖of the 𝑖𝑡ℎ cluster by taking a weighted average of 

all data points, where the weights are the squared 

membership degrees. Equation 9 updates the membership 

values for each data point and cluster in the next iteration 

step(𝑟 + 1), based on the relative distances between the 

data point and all cluster centers: 

𝐶𝑖 =  
∑ (𝑣𝑖𝑘)2. 𝑎𝑘𝑛

𝑘=1   
(8) 

∑ (𝑣𝑖𝑘)2. 𝑎𝑘𝑛
𝑘=1   

𝑣𝑖𝑘
(𝑟+1)

= [∑ (
𝑑𝑖𝑘

𝑟

𝑑𝑗𝑘
𝑟 )

2
𝑐
𝑗=1 ]

−1

  (9) 

Figure 9 presents the flowchart of the FCM method. The 

iterative process continues until the improvement in 

comparison to the previous iteration falls below a 

predefined threshold 𝜀 , as shown in Equation 10. Here, the 

variable 𝑟 represents the iteration step, and the 

superscript(𝑟 + 1) refers to the values computed at the next 

iteration. 

(10) ‖𝐽𝑟+1 − 𝐽𝑟‖ ≤ 𝜀  

 

Figure 8. Flow chart of K-means clustering method
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Figure 9. Flow chart of FCM clustering method

2-6. Harmony Search (HS) Algorithm 

The HS algorithm, introduced by Geem et al. [39], is a 

metaheuristic optimization technique designed to handle 

complex and uncertain systems. The HS algorithm 

demonstrates strong performance in processing both linear 

and nonlinear data structures. The fundamental concept of 

HS optimization is inspired by the process of musical 

composition, where musicians create harmonious melodies 

by selecting and adjusting musical notes. Similar to this 

process, the HS algorithm iteratively refines solutions by 

selecting the most optimal parameters, considering a limited 

memory capacity [40]. 

Outline of the HS Algorithm Steps: Step 1: Initialization of 

Harmony Memory (HM) A set of initial solutions is 

generated randomly based on the problem constraints. For 

an 𝑛-dimensional optimization problem, the HM is 

initialized with a predefined size, referred to as Harmony 

Memory Size (HMS). This process follows Equation 11 

[41]: 

(11) 𝐻𝑀 = [

𝑥1
1

𝑥1
2

∙
𝑥1

𝐻𝑀𝑆

𝑥2
1

𝑥2
2

∙
𝑥2

𝐻𝑀𝑆

⋯
⋯
∙

⋯

𝑥𝑛
1

𝑥𝑛
2

∙
𝑥𝑛

𝐻𝑀𝑆

]  

Each potential solution is represented as [𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑛
𝑖 ], 

where 𝑖 = 1,2, … , 𝐻𝑀𝑆. 

Step 2: Generating a New Harmony from the HM 

Step 3: Updating the HM – The newly generated solution 

is evaluated. If it proves to be better than the worst solution 

currently stored in the HM, it replaces that solution, 

ensuring continuous improvement of the harmony memory. 

Step 4: Iteration Process – Steps 2 and 3 are repeated 

iteratively until the termination criteria—based on accuracy 

and the number of iterations—are met. Figure 10 illustrates 

the flowchart of the HS algorithm. 

2.7. Particle Swarm Optimization (PSO) Algorithm 

The PSO algorithm, a well-known bio-inspired 

optimization technique, was first introduced by Kennedy 

and Eberhart in 1995 [42]. PSO is an efficient and 

straightforward optimization algorithm that iteratively 

searches for an optimal solution within a given solution 

space [42]. The core idea behind PSO is inspired by the 

social behaviour of bird flocks and fish schools, where 

individuals (particles) adapt their movements based on both 

their own experiences and the collective intelligence of the 

swarm. The steps of the PSO algorithm are as follows [43]: 

Step 1: Initialization – A population of particles is 

randomly distributed in the search space; each is assigned 

an initial position and velocity. The objective function 

evaluates the initial fitness values of the particles. 

Step 2: Particle Movement – The velocity of each particle 

is updated based on three factors: (1) its current velocity, (2) 

its distance to its best-known position, and (3) its distance 

to the best-known global position found by the swarm. The 

particle's new position is then determined based on the 

updated velocity. 
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Step 3: Evaluation and Update – Each particle’s new 

position is evaluated using the objective function. If a better 

solution is found, the particle updates its personal best 

position and fitness value. If the particle's solution is better 

than any previously discovered solution, the global best 

position is updated. 

Step 4: Termination – Steps 2 and 3 are repeated until a 

termination criterion is met, such as reaching the maximum 

number of iterations or achieving a predefined fitness 

threshold.

Figure 10. Flowchart of the HS

The PSO algorithm is widely recognized for its simplicity, 

ease of implementation, and minimal parameter tuning 

requirements. Several studies have demonstrated that multi-

objective PSO offers significant advantages in terms of 

convergence speed, accuracy, and solution diversity [44, 

45]. Figure 11 presents the flowchart of the PSO algorithm.  

2.8. Criteria Evaluation 

Assessing the performance of clustering methods is 

essential. The evaluation process requires the application of 

criteria that assess the effectiveness, accuracy, and precision 

of each proposed method. This paper evaluates each method 

based on three widely used criteria: Calinski-Harabasz 

(CHI), Davies-Bouldin (DBI), and Silhouette indices (SI). 

The CHI is defined as: 

(12) 
Calinski-Harabasz 

index (CHI) 
𝐶𝐻𝐼 =

𝑆𝑆𝐵

𝑆𝑆𝑊
×

(𝑁−𝐾)

(𝐾−1)
  

Here, 𝑆𝑆𝐵 represents the overall variance between clusters, 

𝑆𝑆𝑊 denotes the total variance within clusters, 𝑘 is the 

number of clusters, and 𝑁 is the total number of datasets. 

The total between-cluster variance (𝑆𝑆𝐵) is defined as 

follows [46]: 

(13) 𝑆𝑆𝐵 = ∑ 𝑛𝑖𝑚𝑖 − 𝑚2

𝑘

𝑖=1

 

where 𝑚𝑖 indicates the center of the 𝑖𝑡ℎ uster, 𝑘 represents 

the total number of clusters, 𝑚 represents the overall mean 

of the dataset, and |𝑚𝑖 − 𝑚| denotes the Euclidean distance 

between two vectors. The formula for calculating the total 

within-cluster variance (𝑆𝑆𝑊) is as follows: 

(14) 𝑆𝑆𝑊 = ∑ ∑|𝑥 − 𝑚𝑖|
2

𝑥∈𝑐𝑖

𝑘

𝑖=1

 

In this context, 𝑥 represents a specific data point, 𝑘 denotes 

the number of clusters, 𝑐𝑖 refers to the 𝑖𝑡ℎ cluster, 𝑚𝑖 

represents the centroid of that cluster, and |𝑥 − 𝑚𝑖| 
represents the Euclidean norm (Euclidean distance) 

between the data point 𝑥 and the cluster centroid 𝑚𝑖. An 

optimal clustering is achieved when the between-cluster 

variance (𝑆𝑆𝐵) is maximized while the within-cluster 

variance (𝑆𝑆𝑊) is minimized. Consequently, a higher CHI 

ratio indicates better clustering performance, reflecting 

well-separated and compact clusters. 
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The DBI quantifies clustering quality by assessing the ratio 

of intra-cluster dispersion to inter-cluster separation. It is 

calculated as follows [47]: 

(15) 
Davies-Bouldin 

index (DBI) 

𝐷𝐵𝐼 =
1

𝑘
∑ 𝑚𝑎𝑥𝑗≠𝑖{𝐷𝑖.𝑗}𝑘

𝑖=1   

where 𝐷𝑖.𝑗 is the ratio of within-cluster variance to 

between-cluster distance for the 𝑖𝑡ℎ and 𝑗𝑡ℎ clusters and is 

defined as follows: 

(16) 𝐷𝑖.𝑗 =
(𝑑𝑖̅̅ ̅+𝑑𝑗̅̅̅̅ )

𝑑𝑖.𝑗
  

Here, 𝑑𝑗̅ represents the mean distance between each data 

point in cluster 𝑗 and its centroid, 𝑑𝑖̅ represents the mean 

distance between each data point in cluster 𝑖 and its centroid, 

and 𝑑𝑖.𝑗 specifies the Euclidean distance between the 

centroids of clusters 𝑖 and 𝑗. A lower DBI indicates a more 

optimal clustering solution. 

The SI evaluates how similar each data point is to others 

within its cluster relative to points in different clusters and 

is calculated as follows [48]: 

(17) Silhouette index (SI) 𝑆𝐼 =
𝑏𝑖−𝑎𝑖

max(𝑎𝑖∙𝑏𝑖)
  

The variable 𝑎𝑖 represents the mean distance from the 𝑖𝑡ℎ 

point to all other points within the same cluster, while 𝑏𝑖 

denotes the smallest mean distance from the 𝑖𝑡ℎ point to any 

neighboring cluster. The silhouette score ranges from -1 to 

+1. A higher silhouette value indicates that a data point is 

well-clustered within its own group and minimally 

associated with neighbouring clusters. Clustering quality is 

considered more favourable when most points exhibit high 

silhouette values.

 

Figure 11. Flowchart of the PSO algorithm

3. Results 

3-1. Determining the optimal number of clusters 

As illustrated in Figure 12, the first step in the clustering 

process involved segmenting the dataset into clusters 

ranging from 2 to 7 and computing the elbow index for each 

scenario. Based on the methodology described in the 

previous section, the optimal number of clusters for the 

Sungun copper mine dataset was determined to be four. The 

graph initially shows a steep decline, with a distinct elbow 

shape observed at four clusters. Beyond this point, the rate 

of change diminishes significantly, and the curve stabilizes, 

becoming nearly parallel to the X-axis. 

3.2. Preparation of Clustering Model based on K-means 

and FCM algorithm 

Given the unique characteristics of the clustering process, 

its quality can be assessed using multiple evaluation 

methods. By analyzing the spatial distribution of the data, it 

is possible to determine clustering effectiveness and the 

accuracy of data assignment under specific conditions, 

considering the geometric structure and spatial positioning 

of the data. However, visual quality assessment methods are 

often insufficient due to the large volume of data and their 

intricate spatial distribution.  To address these limitations, 

specific indicators and criteria have been developed to 

evaluate clustering performance. In this study, the values of 

the three aforementioned clustering quality criteria were 

computed to assess the efficiency and accuracy of each 

method. After determining the optimal number of clusters 

for the rock joint dataset, K-means and FCM methods were 

applied to classify the data. Figure 13 illustrates the 
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clustering of joints based on the K-means and FCM 

algorithms, demonstrating that both methods partition the 

data into four distinct classes. Table 2 presents the 

evaluation criteria values for data clustering using these two 

methods.

 

Figure 12. Data variance percentage  versus the number of clusters

 

Figure 13. Stereographic Projection of Clustering Results (a) K-means Method, (b) FCM Method 

Table 2. Values of Calinski-Harabasz, Davies-Bouldin, and Silhouette Criteria for Data Clustering 

Values of the criteria of data 
Methods 

Silhouette Davies-Bouldin Calinski-Harabasz 

0.541 0.88 312.77 K-means 

0.565 0.82 346.05 FCM 

The Davies-Bouldin criterion is widely recognized as a key 

metric for evaluating the quality of clustering methods, 

where lower values indicate superior clustering 

performance. In this context, the FCM method, with a value 
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of 0.82, outperforms the K-means method, which has a 

value of 0.88.  The Calinski-Harabasz criterion serves as the 

second evaluation metric for clustering performance, 

favouring higher values as indicators of better clustering 

quality. Based on this measure, the FCM method (346.05) 

achieves more effective clustering compared to the K-

means method (312.77).  The silhouette criterion is the third 

metric used to assess clustering methods for rock joint data 

extracted from Sungun Mine. According to this criterion, 

the FCM method, with a silhouette value of 0.565, 

demonstrates the highest clustering performance. 

3.3. Optimization of K-means and FCM clustering using 

HS and PSO algorithms  

This study explores the integration of HS and PSO with 

FCM and K-means as unsupervised clustering techniques to 

analyze rock joint datasets from various case studies. To 

ensure optimal performance, it is crucial to define the 

control parameters of each algorithm. These parameters 

significantly impact the optimization results and the 

convergence speed of the algorithms. In many cases, there 

are no predefined equations or explicit rules for setting these 

parameters. Instead, expert judgment and dataset-specific 

adjustments, often determined through trial and error, are 

relied upon. For the HS algorithm, the key parameters 

include: Harmony Memory Size (HMS), Maximum 

Number of Iterations (MaxIt), Harmony Memory 

Consideration Rate (HMCR), Pitch Adjustment Rate (PAR), 

For the PSO algorithm, the essential parameters are: Inertia 

Weight (W), Swarm Size (PS), Inertia Weight Damping 

Rate (WDR), Maximum Number of Iterations (MaxIt), 

Following the initial analysis, the control parameters for the 

HS algorithm were set to a maximum of 1000 iterations and 

a Pitch Adjustment Rate (PAR) of 0.1, indicating that 

neighboring values were selected with a 10% probability. 

Furthermore, based on previous research, the typical range 

for HMS is 40 to 100. In this study, a value of 50 was 

deliberately chosen through a trial-and-error approach. 

Table (3) presents the parameter values used in the HS and 

PSO algorithms. 

Table 3. Parameter values of the HS and PSO algorithms 

Values Hyperparameters Meta-heuristic algorithm 

50 HMS 

HS 
1000 MaxIt 

0.2 HMCR 

0.1 PAR 

1 W 

PSO 
50 PS 

0.99 WDR 

500 MaxIt 

Figures 14 to 15 and 16 illustrate the iteration-based 

optimization process and the stereographic plot of the 

clustering results for all methods, respectively.  Figure 14 

shows that the clustering process using HS-FCM and HS-

K-means reached their optimal costs after 188 and 416 

iterations, with final values of 167 and 169, respectively. 

Similarly, Figure 15 indicates that the PSO-K-means and 

PSO-FCM methods achieved their optimal costs after 48 

and 33 iterations, with corresponding values of 156 and 160. 

These figures clearly demonstrate that the PSO algorithm 

converges faster than the HS algorithm, as indicated by the 

lower computational cost. It is important to note that the best 

value is a dimensionless number. Additionally, if the 

difference between the outcomes of two consecutive 

iterations falls below the minimum acceptable precision, the 

optimization process stabilizes.  According to Figure (16), 

all clustering techniques successfully classified the rock 

joint datasets from the case studies. Furthermore, Table 4 

and Figure 17 present a comparative analysis of the 

clustering methods based on the three previously discussed 

evaluation criteria.

 

Figure 14. Best cost per iteration achieved by the algorithms:(a) K-means-HS (b) K-means-PSO 
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Figure 15. Best cost per iteration achieved by the algorithms:(a) FCM-HS (b) FCM-PSO 

 

Figure 16. Comparison of clustering methods (a) K-means, (b) FCM, (c) K-means-HS, (d) FCM-HS, (e) K-means-PSO, (f) FCM-

PSO 
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Table 4. Evaluation criteria for different clustering methods 

\Evaluation criteria 
Clustering method 

Silhouette Calinski-Harabasz Davies-Bouldin 

0.541 312.77 0.88 K-means 

0.566 345.47 0.82 K-means-PSO 

0.560 341.69 0.84 K-means-HS 

0.565 346.05 0.82 FCM 

0.576 348.47 0.80 FCM-PSO 

0.550 329.23 0.85 FCM-HS 

 

Figure 17. The results relate to the current research's evaluation criteria for clustering methods. a: Davies-Bouldin criterion b: 

Calinski-Harabasz criterion c: Silhouette criterion 

4. Discussion 

Based on the results presented in Table 4 and Figure 17, 

the FCM-PSO method has demonstrated superior 

performance in clustering joint-related data compared to 

other methods. According to the DBI, the FCM-PSO 

method achieves the lowest value (0.80), indicating its 

effectiveness in clustering. In contrast, the FCM-HS method 

does not show any improvement over the standard FCM 

method, as FCM alone attains a slightly better score of 0.82. 

Moreover, the PSO algorithm enhances the efficiency of the 

K-means method, reducing the DBI from 0.85 to 0.82. 

For the Calinski-Harabasz criterion, which serves as the 

second evaluation metric, the FCM-PSO method ranks first 

with a value of 348.47, followed by the FCM (346.05) and 

K-means-PSO (345.47) methods. Similar to the previous 

metric, the FCM-HS method underperforms relative to the 

standard FCM approach. However, the K-means-PSO 
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method improves the clustering performance of the original 

K-means algorithm. 

Analyzing the SI as the third evaluation criterion, the 

FCM-PSO method again outperforms all other methods 

with a value of 0.576. The K-means-PSO and FCM methods 

rank second and third with values of 0.566 and 0.565, 

respectively. In contrast, the K-means and FCM-HS 

methods exhibit lower silhouette scores, indicating 

suboptimal clustering performance. Overall, the FCM-PSO 

clustering method consistently demonstrates superior 

performance across all three evaluation criteria, making it 

the most effective approach for joint data classification in 

this study. 

The findings of this study have significant practical 

implications for geotechnical and mining engineering, 

especially in complex geological settings like the Sungun 

porphyry copper deposit. Accurate delineation of joint sets 

facilitates more reliable evaluations of slope stability, tunnel 

orientation, and excavation strategies. The demonstrated 

superiority of the FCM-PSO algorithm provides a powerful 

and adaptable framework for capturing the inherent 

complexity and anisotropy of rock mass Joints. By 

enhancing the precision of joint classification, this method 

contributes not only to safer and more cost-effective mine 

design but also to improved ore recovery through optimized 

excavation and minimized damage to the surrounding rock 

mass. Furthermore, the algorithm’s robustness in handling 

noisy, overlapping, and large-scale data makes it 

particularly well-suited for application in heterogeneous 

open-pit mining environments. 

5. Conclusion 

Rock joints significantly influence the mechanical 

behavior of rock masses, especially in open-pit mining 

operations during mineral extraction. Accurate 

identification and classification of rock joints—typically 

based on their slope and orientation characteristics—are 

essential for effective geotechnical analysis. In recent years, 

various clustering techniques have been employed to 

classify rock joints. However, meta-heuristic algorithms 

have shown superior capabilities in optimizing clustering 

tasks  by identifying  near-optimal solutions  and reducing 

clustering errors. 

This study focused on classifying joint orientation and 

slope data from 19 levels of the Sungun copper mine ramp 

using both K-means and FCM clustering methods. The 

optimal number of clusters was determined using the elbow 

method, resulting in a four-cluster solution. Both clustering 

techniques were subsequently enhanced by incorporating 

HS and PSO to improve centroid positioning and minimize 

intra-cluster distances. Clustering performance was 

quantitatively evaluated using three metrics: Davies-

Bouldin index, Calinski-Harabasz index, and Silhouette 

coefficient. 

Key findings of this study include: 

- The FCM method consistently outperformed the standard 

K-means algorithm across all evaluation metrics. The 

integration of PSO into FCM (i.e., the FCM-PSO method) 

yielded the best performance, with the lowest Davies-

Bouldin index (0.80), highest Calinski-Harabasz score 

(348.47), and highest Silhouette coefficient (0.57). 

- The K-means-PSO method also improved upon the basic 

K-means performance, although it remained less effective 

than the FCM-based models. 

- The FCM-HS method did not demonstrate substantial 

improvements, indicating that PSO may offer more 

effective optimization in this context. 

Given its demonstrated effectiveness, the FCM-PSO 

method presents a powerful approach for classifying 

complex joint datasets in real-world mining applications. 

The ability to robustly handle noisy and overlapping 

geological features makes it particularly suitable for open-

pit mining scenarios. 

Future research directions may include: 

- Conducting comparative analyses using other meta-

heuristic optimization algorithms such as Grey Wolf 

Optimizer (GWO), Ant Colony Optimization (ACO), or 

Firefly Algorithm. 

- Integrating deep learning methods with clustering 

algorithms to enhance performance on larger and more 

complex geological datasets. 

- Applying the proposed hybrid framework to three-

dimensional joint data for improved spatial characterization 

in underground mines. 
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