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Abstract: 

This paper presents a novel real-time intrusion detection framework that leverages Spiking Neural 

Networks (SNNs) for detecting anomalies and cyberattacks in network traffic. Inspired by the 

brain's biological functioning, SNNs process information using discrete spikes over time, 

enabling efficient handling of spatiotemporal patterns in traffic data. The proposed approach 

dynamically adapts to new and evolving attack strategies through Spike-Timing-Dependent 

Plasticity (STDP). This biologically inspired learning mechanism adjusts synaptic weights based 

on the precise timing of neuron activations. This adaptability allows the system to detect zero-

day attacks without frequent retraining, a key advantage over traditional machine learning and 

deep learning models. The proposed system was evaluated using well-established cybersecurity 

datasets, NSL-KDD and CIC-IDS2017, covering a broad spectrum of attack types, including 

DDoS, brute force attacks, infiltration attempts, and port scanning. Comparative experiments 

demonstrate that the SNN-based detection system consistently outperforms traditional models, 

such as Random Forest, Support Vector Machines (SVM), and conventional deep learning 

architectures, in terms of detection accuracy, adaptability, and computational efficiency. The 

system achieves high detection accuracy while maintaining low false positive rates and 

significantly reducing detection time, making it highly suitable for real-time deployment in 

modern network environments. This research highlights the potential of neuromorphic computing 

in the field of cybersecurity, offering a scalable, adaptive, and energy-efficient solution for 

intrusion detection in evolving network infrastructures. 
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1.  Introduction  

With the rapid expansion of digital infrastructure, 

cybersecurity has become a critical concern for organizations 

and governments worldwide. The increasing sophistication 

of cyber threats necessitates the development of advanced 

detection mechanisms capable of real-time, adaptive 

responses. Traditional intrusion detection systems (IDS) 

relying on static rule sets or conventional machine learning 

models often struggle with the dynamic nature of network 

attacks and the need for continual retraining [1, 2]. Many of 

these traditional systems require manual updates and fail to 

detect novel attack patterns effectively, making them less 

suitable for modern, evolving cyber threats. 

Machine learning and deep learning models have shown 

promise in enhancing intrusion detection capabilities, yet 

they suffer from computational inefficiencies, high false 

positive rates, and limited adaptability to zero-day attacks [3, 

4]. These models require extensive labeled datasets for 

training, making them difficult to deploy in real-time 

environments with continuously changing attack patterns. 

Spiking Neural Networks (SNNs), inspired by biological 

neurons, offer a promising alternative by processing 

information through temporal spikes, enabling real-time 

detection with inherent adaptability [5]. Unlike conventional 

deep learning approaches, SNNs leverage event-driven 

computations, significantly reducing energy consumption 

and improving computational efficiency. Moreover, their 

ability to learn from spatiotemporal patterns using 

unsupervised mechanisms such as Spike-Timing-Dependent 

Plasticity (STDP) makes them highly suitable for 

cybersecurity applications [4]. 

This paper introduces an SNN-based approach for real-time 

network traffic anomaly detection and cyberattack 

classification. By integrating STDP learning, our method 

dynamically adapts to emerging threats without frequent 

retraining, making it an ideal solution for modern 

cybersecurity challenges. The effectiveness of our model is 

validated on the NSL-KDD and CICIDS 2017 datasets, 

demonstrating superior performance in terms of detection 

accuracy, computational efficiency, and real-time 
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adaptability. The sophistication of cyber threats necessitates 

the development of advanced detection mechanisms capable 

of real-time, adaptive responses. Traditional intrusion 

detection systems (IDS) relying on static rule sets or 

conventional machine learning models often struggle with 

the dynamic nature of network attacks and the need for 

continual retraining [1, 2]. Spiking Neural Networks 

(SNNs), inspired by biological neurons, offer a promising 

alternative by processing information through temporal 

spikes, enabling real-time detection with inherent 

adaptability [3]. 

2. Related Work 

Spiking Neural Networks (SNNs) have demonstrated 

significant potential in various cybersecurity applications, 

particularly in network traffic anomaly detection. Previous 

research has primarily focused on leveraging SNNs for 

intrusion detection, encrypted traffic classification, and real-

time cyber threat detection [6]. 

Kim et al. [4] proposed an SNN-based model for detecting 

Distributed Denial-of-Service (DDoS) attacks, showing 

improved accuracy compared to traditional machine learning 

models. Lim et al. [7] applied SNNs using Spike-Timing-

Dependent Plasticity (STDP) learning rules to network 

intrusion detection, demonstrating superior adaptability in 

handling novel attack patterns. In a similar study, Tang et al. 

[8] explored hybrid models combining deep learning with 

SNNs, achieving enhanced detection capabilities while 

maintaining computational efficiency. 

Despite these advancements, existing SNN-based IDS 

approaches often face limitations in handling diverse attack 

types and large-scale network data. Our work addresses these 

gaps by proposing an enhanced SNN framework 

incorporating STDP learning and a multi-layered 

architecture for real-time and adaptive cyber threat detection 

[9, 10]. 

3. Methodology 

3.1. Feature Selection and Data Encoding 

Network traffic data consists of numerical and categorical 

features. To effectively utilize SNNs, we select key attributes 

such as packet size, inter-arrival time, protocol type, and 

flow duration. Numerical features are normalized, and spike 

encoding is performed using rate coding: 

𝐹𝑆𝑝𝑖𝑘𝑒 = 𝐹𝑚𝑎𝑥 ×
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  (1) 

where 𝐹𝑠𝑝𝑖𝑘𝑒 is the generated spike frequency, 𝐹𝑚𝑎𝑥 is the 

maximum spike frequency, and X represents the normalized 

feature value [11]. 

3.2. Spiking Neuron Model 

We employ the Leaky Integrate-and-Fire (LIF) neuron 

model for network traffic classification. The neuron 

membrane potential Vm(t)V_m(t) evolves as: 

τ m 
𝑑𝑉𝑚(𝑡)

𝑑𝑡
=  −(𝑉𝑚(𝑡)) − 𝑉𝑟𝑒𝑠𝑡) + 𝑅𝑚𝐼(𝑡)  (2) 

where 𝜏𝑚 is the membrane time constant, 𝑉𝑟𝑒𝑠𝑡  is the resting 

potential, 𝑅𝑚 is the membrane resistance, and 𝐼(𝑡) is the 

input current. A spike is generated when 𝑉𝑚(𝑡) reaches a 

threshold 𝑉𝑡ℎ, resetting afterward [12]. 

3.3. Spike-Timing-Dependent Plasticity (STDP) 

STDP is used to dynamically adjust synaptic weights based 

on spike timing. The weight update rule is given by: 

𝐴 + 𝑒 − |𝛥𝑡|τ +, if 𝛥𝑡 > 0  

𝛥𝑊 = 

𝐴 − 𝑒 − |𝛥𝑡|𝜏 −, 𝑖𝑓 𝛥𝑡 < 0 

(3) 

where 𝛥𝑡 t is the time difference between pre- and post-

synaptic spikes, and 𝐴 +, 𝐴 _ are learning parameters. 

3.4. Network Architecture 

Our SNN-based IDS consists of three layers: 

1. Input Layer: Encodes network traffic data into spike 

trains. 

2. Hidden Layer: Processes spikes using LIF neurons and 

updates weights via STDP. 

3. Output Layer: Classifies network activity as normal or 

malicious. 

The architecture is optimized to minimize false positives 

while ensuring real-time detection capabilities [8]. 

3.5. Performance Metrics 

To comprehensively evaluate the effectiveness of the 

proposed SNN-based Intrusion Detection System (IDS), the 

following performance metrics were used: 

1. Accuracy(%): 

The proportion of correctly classified traffic samples (both 

benign and malicious) to the total number of samples [13]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100  (4) 

where TP is True Positives (correctly detected attacks), TN 

is True Negatives (correctly detected normal traffic), FP is 

False Positives (normal traffic misclassified as attacks), FN 

is False Negatives (attacks misclassified as normal traffic). 

2. Precision (%): 

The proportion of predicted attacks that were actually 

correct. 

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100 (5) 

Precision reflects how well the system avoids false alarms. 

3. Recall(%): 

The proportion of actual attacks that were correctly 

detected. 

Recall highlights how well the system identifies all 

malicious activity. 
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4. F1-Score: 

The harmonic mean of Precision and Recall balances the 

trade-off between avoiding false alarms and capturing all 

attacks. 

F1=
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (6) 

This is a balanced metric for evaluating classification 

performance under imbalanced data scenarios. 

5. Detection Time (ms): 

The average time taken by the system to classify an 

incoming traffic sample.This metric is crucial for real-time 

intrusion detection, where timely response is critical. 

These metrics collectively provide a holistic view of how 

well the proposed SNN-based IDS performs compared to 

traditional machine learning models such as Random Forest, 

Support Vector Machines (SVM), and Deep Learning 

approaches. 

4. Experimental Setup 

4.1. Comparison with Baseline Models 

For a fair comparison, we trained and evaluated traditional 

models (SVM, Random Forest, and Deep Learning) using 

the same dataset and preprocessing pipeline. The key 

differences between our SNN-based IDS and these methods 

are highlighted in Table 1. 

Table 1. An example of a table 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

Detection 

Time 

(ms) 

SNN 

(Proposed) 
98.5 97.8 98.2 98.0 2.1 

Random 
Forest 

94.3 93.1 92.8 92.9 8.7 

SVM 95.6 94.9 94.5 94.7 15.2 

Deep 

Learning 
96.8 96.1 95.9 96.0 30.5 

The experimental results demonstrate that SNN-based IDS 

outperforms traditional models’ accuracy, real-time 

adaptability, and efficiency, making it a promising solution 

for modern cybersecurity challenges. 

4.2. Dataset Selection 

For the evaluation, we utilized the CIC-IDS2017 dataset, a 

well-established benchmark in cybersecurity research. This 

dataset contains real-world attack scenarios, including 

DDoS, brute force attacks, botnets, port scanning, and 

infiltration attempts. It provides a balanced mix of benign 

and malicious network traffic, ensuring a comprehensive 

assessment of the IDS performance. 

4.3. Data Preprocessing 

The dataset was pre-processed to improve model efficiency 

and accuracy. The following steps were applied: 

1. Feature Selection: Highly correlated and redundant 

features were removed to optimize computational efficiency 

[14]. 

2. Normalization: Continuous numerical features were 

normalized to ensure compatibility with neuron activation in 

the SNN. 

3. Encoding of Categorical Features: Non-numeric values 

(e.g., protocol types) were transformed into numerical 

representations using one-hot encoding. 

4. Data Splitting: To ensure a fair evaluation, the dataset 

was divided into 70% training, 15% validation, and 15% 

testing subsets. 

4.4. Evaluation Metrics 

A comprehensive set of evaluation metrics was used to 

assess the overall performance and effectiveness of the 

proposed Spiking Neural Network (SNN)-based Intrusion 

Detection System (IDS). These metrics provide both a 

quantitative assessment of the system’s ability to detect and 

classify network traffic and a practical view of how well it 

performs in real-world scenarios. Below, the significance 

and role of each metric in evaluating the system are 

explained. 

• Accuracy 

Accuracy measures the overall correctness of the system in 

distinguishing between normal and malicious traffic. It 

reflects how well the system identifies both benign network 

activity and various types of cyberattacks. While accuracy 

offers a broad view of performance, it can sometimes 

provide an incomplete picture in cases where the dataset 

contains significantly more normal traffic than malicious 

events. Therefore, accuracy alone is insufficient for 

evaluating an intrusion detection system — more targeted 

metrics must complement it. 

• Precision 

Precision focuses on the quality of the system’s attack 

detection capability. Specifically, it examines how many 

traffic samples the system identified as attacks were truly 

malicious. This metric is crucial because it helps assess the 

risk of false alarms — situations where normal network 

activity is mistakenly flagged as suspicious. False alarms can 

overwhelm security analysts, diverting attention from actual 

threats, so maintaining high precision is especially important 

in operational environments. 

• Recall 

Recall, often referred to as detection rate, reflects the 

system’s ability to identify all actual cyberattacks present in 

the network traffic. A high recall score means that the system 

successfully captures the vast majority of malicious 

activities, minimizing the chances of an attack going 

unnoticed. In the context of network security, missing even 

a small number of threats can lead to severe consequences, 

so recall is one of the most critical metrics for evaluating an 

IDS. 

• F1-Score 
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The F1 score serves as a balanced summary of both 

precision and recall, combining them into a single value that 

reflects how well the system handles the trade-off between 

detecting all attacks and avoiding false positives. This 

balance is particularly important when dealing with highly 

imbalanced datasets, where the number of normal network 

flows greatly exceeds the number of attack instances. A high 

F1 score indicates that the system not only detects threats 

effectively but also does so without raising excessive false 

alarms. 

• Detection Time 

In addition to accuracy and detection quality, speed is 

crucial for any real-time intrusion detection system. 

Detection time measures how quickly the system can analyze 

a piece of incoming traffic and make a decision — either 

classifying it as benign or identifying it as malicious. In 

modern networks, where traffic flows at extremely high 

rates, fast detection ensures that responses can be triggered 

immediately, limiting potential damage caused by 

cyberattacks. The proposed SNN-based system is 

specifically designed to minimize detection time. Thanks to 

its event-driven processing approach, it can adapt rapidly to 

new traffic patterns while keeping processing overhead low. 

• Holistic Evaluation 

By analyzing all these metrics together, we gain a 

comprehensive understanding of how the proposed SNN-

based IDS performs not only in terms of its overall accuracy 

but also in its ability to detect evolving attacks, minimize 

false alarms, and maintain efficient real-time performance. 

This balanced evaluation ensures that the system is practical 

for deployment in dynamic, high-speed network 

environments where both precision and responsiveness are 

critical. 

4.5.  Visualization of Network Activity 

To illustrate the behaviour and effectiveness of our 

proposed SNN-based intrusion detection system, we provide 

the following graphs: 

1. Spiking Activity Visualization 

To gain deeper insights into the internal dynamics of the 

proposed SNN-based intrusion detection system, we 

visualize the spiking activity of neurons in response to 

different types of network traffic. Figure 1 presents a raster 

plot that captures the temporal evolution of neuron spikes 

over time. Each dot represents a spike from a specific neuron 

at a given time step, with different colors indicating neurons 

responsible for detecting distinct traffic patterns, such as 

benign traffic, port scans, or distributed denial-of-service 

(DDoS) attacks. 

This visualization highlights the temporal sparsity and 

event-driven nature of SNN processing, where neurons only 

spike when significant traffic events are detected. Normal 

traffic generally results in lower spike rates, reflecting stable 

network conditions, while anomalies trigger burst-like spike 

patterns due to their statistical deviation from learned traffic 

behavior. Such spike patterns are crucial for real-time 

classification, allowing the system to detect and isolate 

anomalous events in milliseconds. 

 

Figure 1. Spiking Activity Over Time 

2. STDP Learning Dynamics 

The SNN model’s adaptation and self-learning capabilities 

are crucial for maintaining high detection accuracy in 

dynamic environments. To demonstrate this adaptability, we 

visualize the synaptic weight evolution governed by the 

Spike-Timing-Dependent Plasticity (STDP) rule over the 

training period. As shown in Figure 2, the synaptic weights 

undergo continuous fine-tuning in response to new traffic 

patterns, with weights stabilizing for frequently occurring 

normal traffic features while adapting to novel and rare 

attack signatures. 

 

Figure 2. STDP Learning Curve 

This weight adjustment process reveals the unsupervised 

nature of learning, where the network progressively builds 

an internal representation of both benign and malicious 

traffic flows. Periods of elevated weight changes often 

correspond to phases where new attack types are introduced 

into the training data, highlighting the system’s ability to 

incrementally adapt to zero-day threats without manual 

retraining. This evolutionary visualization further supports 

the advantages of biologically inspired learning in modern 

cybersecurity systems. 

3.  Comparative Detection Performance 

To contextualize the benefits of our SNN-based intrusion 

detection system, we provide a comparative visualization of 

detection performance across different models in Figures 3 

and 4. Figure 3 compares accuracy, precision, recall, and F1-

score for the proposed SNN approach, Random Forest, 
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Support Vector Machine (SVM), and a conventional Deep 

Learning model. 

 

Figure 3. Detection Performance Comparison 

 

Figure 4. Detection Time Analysis 

The bar plots illustrate that SNN consistently achieves 

higher precision and recall, indicating both lower false 

positive rates and more reliable detection of diverse attack 

types. This stems from the event-driven spiking mechanism, 

which is more robust to noise and redundant features, 

allowing the network to focus on temporally significant 

patterns [15]. 

In addition, Figure 4 presents a detection time analysis, 

comparing the average time required to classify individual 

traffic samples across the same models. The proposed SNN 

substantially reduces classification latency, making it 

especially suitable for real-time deployment in high-speed 

networks. These comparative visualizations underscore the 

proposed system’s computational efficiency and adaptive 

performance, positioning it as a viable candidate for next-

generation intrusion detection in evolving cyber 

environments. 

These visualizations provide insights into model behavior 

and real-time adaptation, reinforcing the efficacy of our 

SNN-based IDS. 

By leveraging SNNs with STDP, our method achieves 

superior detection performance with lower computational 

cost, making it an effective solution for real-time 

cybersecurity.  

5. Conclusion 

This paper proposes a novel real-time anomaly detection 

framework utilizing Spiking Neural Networks (SNNs) with 

Spike-Timing-Dependent Plasticity (STDP) for effective 

cybersecurity. Our method addresses the limitations of 

conventional machine learning models by enabling dynamic 

learning directly from network traffic data without the need 

for frequent retraining. The SNN-based anomaly detection 

system achieved a detection accuracy of 98.5%, significantly 

outperforming traditional methods such as Random Forest 

(94.3%) and SVM (95.6%). It also demonstrated the 

capability to detect zero-day cyberattacks in real-time. 

Future research should explore the following avenues: 

• Real-world Deployment: Implementing the model in 

operational environments to test its effectiveness on live 

network traffic. 

• Neuro-Inspired Architecture Optimization: Further 

refinement of the SNN architecture, including exploration 

of more advanced neuron models and hybrid approaches 

integrating SNNs with deep learning techniques. 

• Dataset Expansion: Evaluating the system with broader 

datasets, including IoT and industrial control systems 

(ICS) traffic, to enhance its robustness across various 

domains. 

• Hardware Acceleration: Investigating hardware 

implementation on neuromorphic chips such as Loihi and 

SpiNNaker to accelerate real-time anomaly detection at 

scale. 

The proposed system represents a step toward the next 

generation of adaptive, energy-efficient, and accurate 

anomaly detection systems capable of addressing emerging 

cybersecurity challenges. 
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