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Abstract: 

Rapid urbanization presents complex challenges to the well-being of city inhabitants. This study 

reevaluates historical urban design paradigms within the context of contemporary urban growth, 
emphasizing the need for sustainable and psychologically enriching environments. It explores 
regenerative design strategies through the emerging framework of Neuro-Urbanism, an 
interdisciplinary field integrating urban design, neuroscience, and psychology. Employing a 
multi-method approach, this study combines human experience sensing, remote sensing, and 
atmospheric environmental sensing to assess urban spaces. A key methodological innovation is 
the use of voxel-based assessment, a 3D spatial analysis technique that quantifies physical and 
architectural attributes. Machine learning algorithms analyze emotional responses, while data 
loggers record microclimatic conditions such as temperature, humidity, and air quality. Empirical 

findings reveal that temperature and humidity strongly correlate with physiological arousal and 
perceived comfort levels, underscoring the direct impact of urban microclimates on user 
experiences. This study contributes valuable insights into the relationship between environmental 
factors and mental well-being, informing evidence-based urban design strategies to foster 
inclusive, resilient, and health-supportive urban environments. 
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1. Introduction 

Throughout history, the role of nature in shaping human 

well-being has been a central theme across scientific, 

philosophical, and cultural traditions. Contemporary 

research underscores the crucial influence of natural 

environments on physical and mental health, emphasizing 

their role in providing resources, stabilizing climate, and 

enhancing quality of life [1]. Urban planning, as a 

multidisciplinary field, integrates technical and political 

processes to improve human welfare, regulate land use, 

design built environments, and foster sustainable 

interactions with nature [2]. However, as urbanization 

accelerates, projected to reach 68% of the global population 

by 2050 [3], the challenges of maintaining human well-

being in rapidly expanding cities become increasingly 

complex. 

Neuro-Urbanism, an emerging interdisciplinary approach, 

seeks to bridge urban design and neuroscience by 

examining how built environments influence cognitive and 

emotional states. Architectural design, including landscape 

architecture, extends beyond functionality to engage with 

human perception, emotions, and psychological responses. 

While recent advancements in technology allow for real-

time analysis of urban experiences through biometric and 

sensory data, these tools remain underutilized in evidence-

based design [2]. Developing frameworks that integrate 

empirical findings from neuroscience with urban design 

principles is crucial to addressing the gaps between theory 

and practice in fostering human-centered cities. 

A growing body of research focuses on regenerative design 

as a paradigm for sustainable urban development. Initially 

conceptualized by Regenesis in 1995, regenerative 

development emphasizes the co-evolution of human and 

ecological systems, recognizing environmental challenges 

as manifestations of fractured human-nature relationships 

rather than solely technological shortcomings [4]. This 

approach advocates for design processes that restore and 

renew natural and social systems through holistic and 

adaptable strategies. 

https://cste.journals.umz.ac.ir/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
https://foreign.umz.ac.ir/
https://cste.journals.umz.ac.ir/
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Despite recognizing environmental stewardship as 

fundamental to urban planning, integrating human 

psychological responses within ecological frameworks 

remains an ongoing challenge [5]. While ecological models 

have traditionally been applied to urban ecosystems, human 

communities' distinct social and cultural attributes 

necessitate a more nuanced understanding of the reciprocal 

relationship between individuals and their surroundings. 

Cognitive science plays a critical role in this discourse by 

investigating how environmental perception shapes mental 

and emotional states. Research suggests a meaningful 

correlation between sensory experiences and physiological 

responses, highlighting the potential for urban 

environments to either support or hinder mental health [6]. 

The increasing prevalence of mental health issues further 

underscores the urgency of designing restorative urban 

environments. A study conducted in Fars province in 2022 

found that 46% of participants exhibited symptoms of 

mental distress—double the prevalence reported in 2015—

with higher rates among women [7-10]. Recent research in 

Neuro-Urbanism emphasizes the role of cognitive 

neuroscience in shaping urban environments that enhance 

human well-being. Makanadar [11] introduces the concept 

of neuro-adaptive architecture, where buildings and city 

designs dynamically respond to human emotions, utilizing 

real-time biometric feedback to optimize environmental 

conditions. This study underscores the potential of adaptive 

urban spaces to mitigate stress and improve overall mental 

health. 

Elsayed et al. explores the intersection of environmental 

neuroscience and urban planning, demonstrating how 

sensory-rich environments positively influence cognitive 

function and emotional well-being [12]. This research 

highlights how urban design interventions—such as 

increasing green space, incorporating natural materials, and 

designing human-centered streetscapes—can foster 

psychological resilience in city dwellers. 

Furthering this perspective, Yang provides a bibliometric 

analysis of restorative environments, identifying key trends 

and emerging hotspots in research on urban well-being. 

Their study reveals a growing emphasis on the role of multi-

sensory engagement in designing environments that 

promote psychological restoration, particularly through 

biophilic elements and immersive public spaces [13]. 

Lee expands on the concept of sustaining embodied 

experience in the built environment, arguing that the way 

people interact physically and emotionally with urban 

spaces significantly impacts their well-being [14]. His 

findings suggest that tactile and spatial stimuli, such as 

texture variations in materials and dynamic lighting, 

contribute to deeper cognitive and emotional engagement in 

urban settings. 

These findings align with ongoing initiatives by Neuro-

Landscape, an organization dedicated to bridging 

neuroscience and landscape architecture. Their research 

supports the integration of evidence-based urban design 

strategies to create environments that not only sustain 

ecological balance but also enhance mental and emotional 

health. 

Such findings highlight the necessity of urban planning 

strategies that prioritize psychological resilience alongside 

environmental sustainability (Figure 1). Although urban life 

presents inherent stressors, strategic design interventions 

informed by neuroscience and psychology may mitigate 

these adverse effects and foster well-being [15]. 

 

Figure 1. Structural Framework in Interdisciplinary Studies 

of Neuro-urbanism in Urban Planning (Authors based on 

Adli et al. [15]) 

This study proposes an integrative framework that 

synthesizes principles from Neuro-Urbanism and 

regenerative design to evaluate urban environments' impact 

on well-being. Drawing on insights from neuroscience, 

architecture, and environmental psychology, this approach 

aims to establish a systematic methodology for assessing 

urban spaces’ physiological and cognitive effects. The study 

seeks to address the following research questions: 

1. How can principles of Neuro-Urbanism inform 

evidence-based design strategies for enhancing urban well-

being? 

2. In what ways can regenerative design be applied to 

foster holistic and adaptive urban environments? 

3. How do sensory and cognitive responses to urban 

spaces influence mental health and overall quality of life? 

By integrating these perspectives, this research aims to 

advance interdisciplinary discourse on the intersection of 

urban planning, neuroscience, and ecological sustainability. 

The proposed framework offers a structured approach for 

incorporating human-centered considerations into urban 

design, ultimately contributing to more resilient and health-

supportive cities. 

2. Methodology 

The methodology employed in this study aimed to 

comprehensively collect and analyze data on environmental 

parameters, physiological responses, and emotional 

experiences, using a multi-faceted approach.  

To achieve these objectives, the methodology consisted of 

three main steps: human experience sensing, environmental 
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atmospheric sensing, and remote sensing of urban objects. 

For the first two steps, sensor selection and setup were 

considered to establish a consistent framework for real-time 

data acquisition. Additionally, specific procedures were 

implemented to collect data. 

Ten participants were recruited for the pilot study. They 

provided informed consent, and inclusion criteria were 

defined to ensure a representative sample of urban dwellers. 

Each participant completed experimental sessions, ensuring 

the collection of all exposure data. Participants experienced 

an 18-hectare urban zone in the Farhangshahr zone in Shiraz 

(see Figures 2 and 3). While the modest sample size may 

limit statistical power, it provided initial insights into urban 

environmental impacts, and we acknowledge this limitation 

while suggesting that future research expand the sample size 

to enhance generalizability. 

 

Figure 2. The location of the site and the selected zone of the 

experimental research on Human Experience Sensing 

 

Figure 3. The settings of the test environment in riding mode 

are set by operators to control the data of the data logger and 

the physiological sensor 

A custom-designed data logger was used to continuously 

record environmental parameters such as temperature, 

humidity, air pollution, light intensity, and sound levels. The 

logger was built using an Arduino Nano microcontroller 

coupled with dedicated sensors (e.g., AM2311 for 

temperature and humidity, MQ-135 for air pollution, BH175 

for light intensity). A Bluetooth module (HC-06) 

transmitted the sensor data in real time to a streamlined 

mobile application developed with Flutter and Dart. 

Technical details of the application were minimized to 

emphasize the environmental insights critical to urban 

design outcomes. 

Physiological data were acquired using the EmotiBit 

wearable sensor, which records multiple modalities 

including Electrodermal Activity (EDA/GSR) and Heart 

Rate (HR). The sensor was attached to the proximal portion 

of the participant’s index finger, a placement supported by 

previous studies van Dooren and Janssen [16] , to optimize 

the reliability of the skin conductance measurements. 

2.1. Data Analysis Techniques 

The collected data were systematically analyzed using 

statistical methods. Pearson and Spearman correlation 

analyses evaluated associations among environmental 

factors, physiological responses, and self-reported 

emotional states. Correlation matrices and regression 

models were developed to quantify the strength and 

direction of these relationships, providing insights into key 

determinants of urban well-being. 

1. Machine learning techniques were employed to 

classify emotional states based on physiological data. 

The Random Forest algorithm was selected for its 

robustness, ability to handle high-dimensional and 

noisy data, and superior performance in similar 

affective computing studies by Ahmad and Khan [17] 

and Joy et al [18]. The process involved: 

2. Feature Extraction and Selection: Relevant features 

(e.g., average HR and GSR) were extracted from the 

raw physiological data. 

3. Preprocessing: The data were cleaned to remove 

motion artifacts using Python’s Pandas library and 

Neurokit2. 

Model Training and Evaluation: Using the International 

Affective Picture System (IAPS) as a labeled database, we 

trained the Random Forest model on 80% of the data, with 

the remaining 20% used for testing. Performance metrics, 

such as classification accuracy, were computed to validate 

the model. 

2.2. Experimental Tool 

The Emotibit wearable sensor was used in this study as a 

biological monitoring device to capture high-precision 

physiological and motion data. This scientifically validated 

hardware allows wireless or direct recording onto internal 

memory, supporting diverse experimental setups. Built on 

Arduino technology, Emotibit enables project expansion 

and customization, making it highly adaptable for research 

purposes. The device collects 16 physiological and motion-

related data points, including Electrodermal Activity (EA), 

Electrodermal Response (ER), Photoplethysmography 

(PPG), Temperature (T0 and TH), Acceleration (A) and 

Gravity (G) in X, Y, and Z directions, Skin Conductance 

(SA), Skin Conductance Response (SCR), Skin 

Conductance Level (SCL), Skin Conductance Frequency 
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(SF), Heart Rate (HR), Interbeat Interval (BI), and Skin 

Humidity (HO). 

For this experiment, Heart Rate (HR) and Galvanic Skin 

Response (GSR) were selected as key physiological 

indicators to assess participant arousal variations. These 

parameters were chosen due to their established 

effectiveness in psychophysiological research for 

measuring emotional responses. 

2.3. Heart Rate (HR) 

Heart rate is a long-standing psychophysiological indicator 

of cognitive load [19, 20]. Cardiovascular indicators such as 

Heart Rate Variability (HRV) are also evaluated alongside 

heart rate. However, due to time constraints in data 

processing, HRV may not be suitable for tests requiring 

rapid results. Hence, given the short-term changes and 

momentary focus of this research, heart rate is employed as 

a feature to assess emotional-arousal changes in users. 

Cardiovascular activity is correlated with other information 

regarding user arousal capacity and the level of pleasantness 

or unpleasantness associated with emotions to differentiate 

between negative arousal emotions like anxiety and positive 

emotions like excitement. 

2.4. Galvanic Skin Response (GSR) 

GSR, also known as Electrodermal Activity (EDA), 

reflects sympathetic nervous system responses influenced 

by cognitive and emotional states. EDA metrics are applied 

to various issues in basic research, such as attention and 

emotion. These signals can be analyzed alongside Skin 

Conductance Level (SCL), representing tonic activity, and 

Skin Conductance Response (SCR), measuring phasic 

activity [21]. SCR typically measures physiological 

responses to distinct events, while SCL is useful for 

measuring overall arousal over a longer timeframe. 

Previous studies have successfully utilized SCL and SCR as 

stress indicators during various stress-inducing stimuli [22]. 

2.5. Sensor Attachment Location on the Body 

To ensure optimal data acquisition, the Emotibit sensor 

was placed on the proximal part of the index finger, a 

standard location for skin conductance measurements [16]. 

Participants were instructed to minimize movement during 

the experiment to reduce motion artifacts. They were seated 

in the rear seat of a stationary car to control for external 

environmental factors (Figure 3). Researchers monitored 

physiological and environmental data in real time to ensure 

the validity of recorded signals (Figure 4). 

2.6. Machine Learning Algorithms for Arousal and 

Valence Classification. 

A machine learning approach was employed to analyze 

physiological data and classify emotional states based on 

arousal and valence levels. The classification process 

involved four key steps: 

 

Figure 4. Location of the sensor on the fingers 

1. Feature Extraction and Selection: Relevant 

physiological features, including average HR and GSR 

values, were extracted to serve as input for the 

classification model. 

2. Preprocessing of Physiological Signals: Data were 

cleaned by removing motion artifacts and noise using 

Python’s Pandas library and Neurokit2 [23]. Any 

missing or inconsistent data points were addressed to 

ensure data integrity. 

3. Selection of Emotion Database: The International 

Affective Picture System (IAPS) database [24] was 

utilized to provide standardized emotional stimuli. A 

subset of 24 images was selected from predefined 

emotional zones, and a 20-minute video was created, 

displaying each image for 30 seconds followed by a 20-

second neutral task (Figure 5). 

4. Emotion Classification and Model Evaluation: Various 

machine learning algorithms were tested for 

classification accuracy, including decision trees, k-

nearest neighbors, support vector machines, and neural 

networks [17, 18]. The Random Forest algorithm was 

ultimately selected due to its high precision and 

robustness in handling high-dimensional physiological 

data. 

2.7. Machine Learning Algorithms for Arousal and 

Valence Classification 

A machine learning approach was employed to analyze 

physiological data and classify emotional states based on 

arousal and valence levels. The classification process 

involved four key steps: 

1. Feature Extraction and Selection: Relevant 

physiological features, including average HR and GSR 

values, were extracted to serve as input for the 

classification model. 

2. Preprocessing of Physiological Signals: Data were 

cleaned by removing motion artifacts and noise using 

Python’s Pandas library and Neurokit2 (Makowski et al., 

2021). Any missing or inconsistent data points were 

addressed to ensure data integrity. 

3. Selection of Emotion Database: The International 

Affective Picture System (IAPS) database [24] was 

utilized to provide standardized emotional stimuli. A 



Askari et al/Contrib. Sci. & Tech Eng, 2025, 2(1) 

41 
 

subset of 24 images was selected from predefined 

emotional zones, and a 20-minute video was created, 

displaying each image for 30 seconds followed by a 20-

second neutral task (Figure 5). 

  

Figure 5. Left: Scatter plot of the results from the IAPS database photos. The gray color corresponds to all the photos, and the 

black circles represent the photos selected for the present test. Right: Test environment settings considered for displaying IAPS 

photos

4. Emotion Classification and Model Evaluation: Various 

machine learning algorithms were tested for 

classification accuracy, including decision trees, k-

nearest neighbors, support vector machines, and neural 

networks [17, 18]. The Random Forest algorithm was 

ultimately selected due to its high precision and 

robustness in handling high-dimensional physiological 

data. 

2.8. Emotion Classification and Model Evaluation 

Feature extraction from HR and GSR data allowed 

emotion classification using the Random Forest algorithm. 

To evaluate model performance, the dataset was split into 

80% training and 20% testing subsets. Emotional states 

were classified based on arousal and valence dimensions, 

with a binary labeling system: a score of 1 indicated high 

arousal or pleasantness, while 0 represented low arousal or 

unpleasantness. This approach aligns with standard 

affective computing and psychological research 

methodologies, providing a simplified yet effective 

framework for analyzing emotional responses. 

2.9. Environmental Atmospheric Sensing 

Environmental atmospheric data were recorded to account 

for external variables influencing emotional responses to 

complement physiological measurements. A custom 

portable data logger was developed to collect environmental 

indicators relevant to urban design and human well-being. 

This system was specifically tailored to ensure systematic 

data collection under varying environmental conditions, 

contributing to the broader applicability of this study's 

findings. 

The experimental framework combining physiological 

sensing, machine learning classification, and environmental 

monitoring provides a comprehensive methodology for 

assessing emotional responses in dynamic settings. The 

integration of wearable sensing technology and artificial 

intelligence enhances the precision and reliability of 

emotional state analysis, offering valuable insights for 

applications in affective computing, human-computer 

interaction, and urban design. 

2.10. Data Logger Design 

The data logger was meticulously designed utilizing an 

Arduino Nano microcontroller and a selection of sensors 

tailored for precise weather-related data collection. Careful 

consideration was given to the choice of sensors to ensure 

accurate data gathering. A Bluetooth sensor module, HC-06, 

was also integrated for seamless wireless data transmission.  

The HES (Hybrid Environmental Sensing) box 

incorporates multiple sensors to monitor the environment 

comprehensively (Figure 6). Temperature and humidity 

sensors (AM2311) provide real-time data on environmental 

conditions, while an air pollution sensor (MQ-135) enables 

monitoring of harmful gases in the atmosphere. 

Furthermore, a lux meter (BH175) measures ambient light 

intensity. These sensors collaborate to offer a holistic view 

of the surrounding environment, empowering users to make 

informed decisions regarding air quality and energy 

efficiency. The HES box features a patented recording 

system for real-time data capture. The Arduino 

microcontroller facilitates data collection from the sensors, 

which is then transmitted to a Bluetooth module. This 

module seamlessly sends data in real-time to a dedicated 

application. 

2.11. Application Design 

The application's primary objective was to control, record, 

and store data collected from a Bluetooth module on the 

data logger. This was achieved using the Flutter framework 

and the Dart programming language to provide a user-

friendly interface for future use.
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Figure 6. The HES datalogger box is designed with the display of the sensors on the board and the specifications of the sensors 

used

To record sound intensity data, the application utilizes the 

phone’s microphone. Permission is requested from the user 

to access the microphone, a standard requirement for 

applications utilizing audio input. The application receives 

data sent via Bluetooth from the data logger as a JSON 

string, which is then converted into a Uint8List buffer for 

further processing. This conversion process requires using 

appropriate libraries and packages in the application code to 

manage the conversion and manipulation of data. 

Subsequently, the data is converted into a continuous textual 

line, and the textual data is separated and stored in a Float 

format. 

2.12. Remote Sensing of Urban Objects 

An innovative approach for creating and analyzing 

qualitative and quantitative data for urban zones was 

adopted, employing voxel-based assessment (VBA). The 

six-stage process for collecting and categorizing data 

includes: 

1. Aerial Imagery Acquisition: High-resolution aerial 

imagery of the study zone is obtained. 

2. GIS-Based Separation: Land parcels and street networks 

are separated using available GIS data. 

3. Semantic Segmentation: Advanced segmentation 

algorithms (e.g., U-Net architecture trained on ISO 

37120-aligned datasets) are employed to classify urban 

materials (stone, brick, concrete, soil, natural green 

materials, and composite materials). 

4. 3D Modeling: A 3D volumetric model of the zone is 

constructed. 

5. Texture Attachment: Textural information is assigned to 

corresponding voxels. 

6. Voxelization and Classification: The 3D model is 

voxelized (with a resolution of 1 m³) to quantify the 

spatial distribution of materials and land uses. Voxels are 

further classified into “stationary” (e.g., built 

infrastructure with minimal movement) and “mobile” 

(areas of active transit) based on additional data such as 

traffic sensor outputs and land-use maps. This approach 

integrates with our physiological and environmental data 

to provide a comprehensive picture of urban conditions 

relevant to Neuro-Urbanism. 

VBA is a vital component of a systematic approach to 

urban analysis. The voxelized representation of cities 

enables a deeper and more comprehensive evaluation of the 

materials, locations, sizes, and functions of urban structures 

and objects (Figure 7). 

 

Figure 7. The final voxelized model of the studied zone, 

coupled with the sensors used and the results of VBA analysis, 

offers valuable insights into city features and development, 

informing urban planning decisions and future design 

considerations.

3. Results 

3.1. Statistical Analysis 

The statistical analysis conducted in this study aimed to 

elucidate the intricate relationships between environmental 

variables, physiological responses, and emotional 

experiences. Employing a multifaceted approach, the 

analysis incorporated correlation analysis, significance 

testing, and regression modeling to comprehensively 

explore the associations among the diverse datasets. 
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Initially, correlation analysis was undertaken to scrutinize 

the pairwise relationships among different environmental 

factors, physiological measures, and emotional indices. 

Pearson correlation coefficients were computed to quantify 

the strength and direction of these associations. Significance 

testing was then applied to discern the reliability of the 

observed correlations, with p-values indicating the 

statistical significance of the relationships. 

Furthermore, regression modeling was employed to 

investigate the predictive capacity of environmental 

variables on physiological responses and emotional 

experiences. Multiple regression analyses were conducted 

to assess the collective influence of multiple predictors on 

the dependent variables. Coefficients of determination (R-

squared) were computed to evaluate the proportion of 

variance in the dependent variable explained by the 

independent variables. 

Overall, the statistical analysis yielded valuable insights 

into the complex interplay between environmental factors, 

physiological responses, and emotional experiences. By 

employing rigorous analytical techniques, this research 

contributed to a deeper understanding of the mechanisms 

underlying human-environment interactions in urban 

settings. The statistical analysis findings have important 

implications for urban planning, public health, and well-

being, informing evidence-based strategies for creating 

healthier and more sustainable urban environment. 

3.2. Voxel-Based Assessment and Material Classification 

The voxel-based assessment (VBA) approach provides a 

multidimensional framework for urban analysis by 

integrating spatial, environmental, and physiological data. 

Rooted in Neuro-Urbanism, VBA allows for a granular 

understanding of how built environments influence human 

cognition, stress levels, and overall well-being. This method 

captures micro- and macro-scale features that impact 

mobility, material composition, and environmental quality 

by partitioning the urban landscape into uniform volumetric 

units. The six-stage VBA process encompasses voxel grid 

generation, material classification, activity mapping, 

environmental color analysis, physiological data 

correlation, and integration with machine learning for 

predictive insights. 

The study employed a voxel grid with a resolution of 1 

cubic meter to systematically classify urban elements. 

Material classification followed ISO 37120 urban spatial 

quality standards, categorizing voxels into stone, brick, 

concrete, soil, natural green materials, and composite 

materials (Figure 8).

  

Figure 8. The percentage of each material and type of voxels available on the site

This classification, visualized in Figure 12, reveals that 

stone is the predominant material, accounting for 34% of 

voxels, while brick is the least represented at only 0.82%. 

Additionally, green elements cover merely 0.13% of the 

area, suggesting an urgent need for enhanced green 

infrastructure. Figure 8 illustrates zoning classification 

based on these material distributions.

  

Figure 9. The results obtained from the ratio of voxels to express the potential of a voxel being active or static

 

Voxel-based activity classification distinguished between 

"stationary" and "mobile" spaces, integrating traffic sensor 

outputs and land-use data. Analysis revealed that 90.28% of 

voxels were associated with stationary activity, while only 

9.72% supported mobility. Furthermore, only 1% of voxels 

were deemed pedestrian-friendly, with the majority 

allocated to roadways. These findings underscore the 

scarcity of walkable spaces and the necessity for urban 

interventions to enhance pedestrian accessibility and 

mobility behaviors (Figure 9). The environmental color 

assessment further emphasized the dominance of neutral 
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hues, highlighting a lack of diversity in visual stimuli. This 

homogeneity in urban color palettes can contribute to lower 

cognitive stimulation and reduced wayfinding efficiency. 

Figure 10 illustrates the proportional use of various colors 

throughout the study zone, supporting the call for a more 

vibrant and visually engaging urban environment.

 

Figure 10. The ratio of using each color in the studied zone

Physiological responses were analyzed through EmotiBit 

sensors deployed on two pilot groups to measure 

Electrodermal Activity (EDA), Galvanic Skin Response 

(GSR), and Heart Rate (HR). The results, displayed in 

Figure 11, indicated that heart rate peaked at the beginning 

of the path, along steep sections, and near the highway, 

suggesting heightened stress levels in these areas.

 

Figure 11. Average heart rate (left) and galvanic skin response (right) of pilot test participants

Conversely, GSR data showed a notable decline near the 

highway in the second sample, potentially reflecting 

reduced cognitive load or emotional engagement. Applying 

machine learning models, particularly the Random Forest 

algorithm, further refined these insights by mapping arousal 

and valence levels across spatial points (Figures 12 and 13). 

These results align with theories in Neuro-Urbanism, 

reinforcing the connection between spatial configurations 

and psychological well-being.

 

 

Figure 12. The Emotional state of the study zone in the Arousal-Valence model 
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Figure 13. Point-by-point display of Arousal and Valence resulting from the prediction of the Random Forest algorithm 

Environmental datalogger analysis provided additional 

context by capturing air quality, sound levels, relative 

humidity, and temperature variations along the study route. 

The findings, visualized in Figure 14, revealed an average 

temperature of 15.22°C, relative humidity of 34%, particle 

concentration of 1734 PPM, and an average sound intensity 

of 77 dB. Notably, pollution levels were elevated near major 

streets, reinforcing the necessity for green infrastructure, 

pedestrian walkways, and shaded areas to mitigate thermal 

discomfort and air quality concerns.

  

  

 

Figure 14. Point-by-point visualization of the data logger results for the average of the pilot study - a) temperature chart, b) 

humidity chart, c) air pollution, d) light intensity chart, e) sound intensity chart

To translate these findings into actionable urban design 

recommendations, strategic planning should prioritize green 

buffers, tree-lined streets, and noise-reducing materials to 

enhance environmental quality. Moreover, integrating 

physiological and voxel-based spatial analytics underscores 

the potential for data-driven urban design interventions that 

promote cognitive well-being and environmental 

sustainability. 

4. Discussion 

The study collected environmental and physiological data 

through various indices, including heart rate (HR), 

electrodermal activity/galvanic skin response (EDA/GSR), 

temperature, relative humidity, sound levels, pollution 

(ppm), and light intensity. The objective was to explore their 

correlations with emotional states, namely arousal and 

valence, and to investigate their implications for urban 
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design. The results revealed varying strengths of 

relationships among these variables, with some correlations 

exhibiting practical significance and others presenting weak 

or negligible relationships. 

4.1. Heart Rate and Environmental Factors 

The correlation between heart rate and environmental 

factors, as presented in Table 1, reveals several noteworthy 

findings:

Table 1. The correlation between heart rate and environmental factors 

Index Variable R squared P (two-tailed) P value summary 

EDA/GSR 

Temperature 0.4043 <0.0001 **** 

Relative Humidity 0.3883 <0.0001 **** 

Sound Level 0.153 <0.0001 **** 

Pollution (ppm) 0.2205 <0.0001 **** 

Light Intensity 0.002047 <0.0001 **** 

Heart Rate 0.01232 0.1734 ns 

Heart Rate 

Light Intensity 0.002047 0.5799 ns 

EDA/GSR 0.01232 0.1734 ns 

Temperature 0.07864 0.0005 *** 

Relative Humidity 0.135 <0.0001 **** 

Sound Level 0.00223 0.5635 ns 

Pollution (ppm) 0.03516 0.0207 * 

The correlation between heart rate and light intensity (r = 

0.002, p = ns) is exceedingly weak and statistically 

insignificant, suggesting that changes in light intensity have 

little to no practical effect on heart rate. This observation 

implies that light intensity may not be a major factor in 

regulating physiological responses like heart rate, 

particularly in relatively stable lighting conditions. 

Similarly, the correlation between heart rate and 

electrodermal activity/galvanic skin response (EDA/GSR) 

(r = 0.012, p = ns) is also weak and non-significant. This 

reflects that while both heart rate and EDA/GSR are related 

to physiological arousal, they do not exhibit a strong 

interdependence in the context of this study. This suggests 

that while both indices might reflect changes in emotional 

or physiological states, they may not always move in 

tandem or be influenced by other factors. 

On the other hand, the correlation between heart rate and 

temperature (r = 0.079, p < 0.0001) shows a moderate 

positive relationship, indicating that heart rate tends to 

increase with higher temperatures. This suggests that 

temperature is an important physiological driver, as warmer 

environments may increase heart rate. This finding is 

consistent with previous studies showing that heat stress can 

lead to elevated heart rates. The implications for urban 

design are noteworthy, as higher ambient temperatures in 

city environments could contribute to increased stress and 

discomfort for inhabitants. A stronger positive correlation is 

observed between heart rate and relative humidity (r = 

0.135, p < 0.0001), pointing to the impact of moisture in the 

air on cardiovascular responses. High humidity can affect 

heat dissipation and cause discomfort, potentially 

increasing heart rate. This relationship suggests that urban 

areas with high humidity levels might require thoughtful 

design solutions, such as improved ventilation and shading, 

to reduce residents' physiological impact. 

In contrast, the weak and non-significant correlation 

between heart rate and sound level (r = 0.002, p = ns) 

suggests noise may not significantly influence heart rate in 

this context. While sound levels can influence stress and 

emotional states, their direct impact on physiological 

indicators like heart rate may be minimal or overshadowed 

by other factors. Lastly, the weak positive correlation 

between heart rate and pollution (r = 0.035, p = *) indicates 

a slight increase in heart rate with higher pollution levels. 

This may suggest that polluted urban environments have a 

mild physiological effect on individuals, potentially 

contributing to stress or discomfort. However, the weak 

strength of this correlation calls for further investigation 

into whether pollution is a substantial contributor to stress 

or if other variables are more influential. 

4.2. EDA/GSR and Environmental Factors 

Table 2 presents correlations between electrodermal 

activity/galvanic skin response (EDA/GSR) and various 

environmental factors. These correlations provide valuable 

insights into how environmental stimuli affect physiological 

arousal:

Table 2. The correlations between (EDA/GSR) and various environmental factors 

Index Variable r 95% Confidence Interval P (two-tailed) P value summary Significant? (alpha = 0.05) 

Valence 
Light Intensity 0.1442 -0.02015 to 0.3009 0.0764 ns No 

Pollution (ppm) -0.2640 -0.4101 to -0.1047 0.0010 ** Yes 
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Sound Level 0.3296 0.1752 to 0.4681 <0.0001 **** Yes 

Relative Humidity 0.2762 0.1177 to 0.4210 0.0006 *** Yes 

Temperature -0.3326 -0.4708 to -0.1785 <0.0001 **** Yes 

EDA/GSR 0.4157 0.2703 to 0.5426 <0.0001 **** Yes 

Heart Rate -0.0292 -0.1921 to 0.1352 0.7208 ns No 

Arousal 

Light Intensity -0.1213 -0.2795 to 0.04343 0.1367 ns No 

Pollution (ppm) 0.2627 0.1033 to 0.4089 0.0011 ** Yes 

Sound Level 0.02083 -0.1435 to 0.1840 0.7989 ns No 

Relative Humidity 0.07284 -0.09209 to 0.2339 0.3725 ns No 

Temperature -0.007666 -0.1713 to 0.1564 0.9253 ns No 

EDA/GSR -0.2075 -0.3591 to -0.04517 0.0103 * Yes 

Heart Rate -0.2255 -0.3754 to -0.06399 0.0052 ** Yes 

The correlation between EDA/GSR and temperature (r = 

0.4043, p < 0.0001) indicates a strong positive relationship, 

suggesting that higher temperatures are associated with 

increased electrodermal activity/galvanic skin response 

(EDA/GSR). This is consistent with the body's 

physiological response to heat stress, where rising 

temperatures lead to heightened arousal, reflected in 

increased skin conductivity. This finding suggests that 

urban design strategies aimed at cooling public spaces could 

help reduce physiological arousal linked to high 

temperatures, thereby enhancing comfort in those 

environments. 

Similarly, the positive correlation between EDA/GSR and 

relative humidity (r = 0.3883, p < 0.0001) implies increased 

humidity levels are linked to higher arousal. This suggests 

that urban environments with high humidity could induce 

stress or discomfort among residents. As a result, there is a 

need for design interventions to optimize air quality and 

reduce humidity in enclosed spaces, which could potentially 

improve residents' comfort and well-being. 

A moderate positive correlation between EDA/GSR and 

sound level (r = 0.153, p < 0.0001) suggests that noise levels 

can contribute to physiological arousal, reinforcing the 

well-documented effects of noise pollution on stress. This 

highlights the importance of incorporating strategies to 

mitigate noise pollution in urban areas, such as 

soundproofing and the inclusion of green spaces, which can 

have a calming effect on individuals and improve their 

overall quality of life. 

The correlation between EDA/GSR and pollution (r = 

0.2205, p < 0.0001) further suggests that higher pollution 

levels can increase physiological arousal. This finding 

emphasizes the negative impacts of poor air quality on 

public health and suggests that urban areas with higher 

pollution levels may need interventions to improve air 

quality. Potential solutions could include expanding green 

spaces or enhancing ventilation systems, which would help 

mitigate the effects of pollution on residents' health. 

Finally, the weak and non-significant correlation between 

EDA/GSR and light intensity (r = 0.002047, p = ns) 

suggests that light intensity may not be a major factor 

influencing physiological arousal in this study. This 

reinforces the idea that other environmental factors, such as 

temperature and humidity, significantly shape physiological 

responses. 

4.3. Emotional States: Arousal and Valence 

A critical analysis of emotional states, specifically arousal 

and valence, is crucial for understanding how the 

environment shapes emotional experiences. The correlation 

between arousal and pollution (r = 0.2627, p = 0.0011) 

suggests a moderate positive relationship, indicating that 

higher pollution levels are associated with increased 

emotional arousal. Pollution can induce discomfort, which 

in turn can trigger heightened physiological responses, such 

as increased arousal. This suggests that urban areas with 

high pollution levels may lead to higher stress and 

emotional arousal in residents. This finding underscores the 

need for urban design solutions that address pollution and 

its potential psychological impacts, including strategies for 

reducing emissions and enhancing air quality. 

In contrast, the weak and non-significant negative 

correlation between arousal and light intensity (r = -0.1213, 

p = ns) suggests that light levels have little to no impact on 

emotional arousal within the scope of this study. This 

finding contradicts other studies that have linked natural 

light exposure to improved mood and reduced stress. It may 

indicate that the lighting conditions in the study were not 

extreme enough to elicit a measurable emotional response, 

or other factors may have been more influential. 

The significant positive correlation between valence and 

sound level (r = 0.3296, p < 0.0001) suggests that higher 

sound levels are associated with more positive emotional 

experiences. This could indicate that participants in the 

study responded more favorably to certain types of noise, 

such as music or ambient sound. This highlights the 

potential for urban design to enhance emotional experiences 

in public spaces by carefully considering and controlling 

soundscapes, potentially using nature sounds or calming 

music to improve the emotional atmosphere. 

On the other hand, the moderate negative correlation 

between valence and pollution (r = -0.264, p = 0.001) 

suggests that higher pollution levels are linked to lower 

emotional satisfaction. This finding emphasizes the 
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importance of cleaner air for improving emotional well-

being. Urban environments with lower pollution levels will 

likely foster more positive emotional states, enhancing 

residents' overall quality of life. Cleaner air may create a 

more pleasant environment and positively influence 

residents' emotions. 

The negative correlation between valence and temperature 

(r = -0.3326, p < 0.0001) suggests that higher temperatures 

are associated with lower emotional satisfaction, aligning 

with previous studies showing discomfort caused by 

excessive heat. In light of this, urban design strategies, such 

as increasing greenery, adding shaded areas, or 

implementing cooling techniques, could help mitigate the 

negative emotional effects of high temperatures and 

improve the comfort of public spaces. 

These findings underscore the significance of linking 

emotional states to urban features. The relationship between 

green spaces and valence highlights the role of a cleaner, 

greener environment in promoting positive emotional 

experiences. Urban areas rich in greenery can reduce the 

negative effects of pollution, fostering calmness and 

satisfaction. The relationship between noise and arousal 

also suggests that urban design can leverage soundscapes to 

influence emotional states. Designers can create spaces that 

positively impact residents' emotional well-being by 

incorporating natural sounds or reducing unwanted noise. 

5. Conclusion 

This study comprehensively evaluates urban environments 

by integrating voxel-based assessments, physiological 

measurements, and environmental data to investigate the 

intricate relationships between spatial features, human 

health, and emotional experiences. The voxel-based 

assessment (VBA) revealed key deficiencies in stationary 

activity spaces and pedestrian-friendly features, 

emphasizing the need for urban redesigns that prioritize 

mobility and human-centric environments. Furthermore, the 

prevalence of materials such as stone and concrete, 

alongside the minimal presence of greenery, indicates a 

missed opportunity for green infrastructure and highlights 

the potential for improving environmental quality through 

targeted design interventions. 

The physiological data, obtained through EmotiBit sensors 

measuring Electrodermal Activity (EDA/GSR) and Heart 

Rate (HR), complement the voxel-based insights by 

providing physiological evidence of how urban spaces 

influence emotional and physical states. Notably, higher 

heart rates and increased arousal levels were observed in 

areas with environmental stressors such as highways and 

steep pathways. These physiological responses were closely 

correlated with environmental variables such as 

temperature, humidity, pollution, and light intensity, 

demonstrating the direct impact of these factors on 

individuals' emotional states and overall well-being. 

The voxel-based data and physiological measurements 

offer a robust framework for understanding the dynamic 

interplay between built environments and human health. 

The findings underscore the potential for regenerative urban 

design, where environmental features such as green spaces 

and pedestrian-friendly pathways could foster emotional 

well-being and promote healthier, more sustainable urban 

living. By considering spatial data and physiological 

responses, urban planners can create environments that 

support physical activity and emotional balance, leading to 

more resilient and people-centered cities. 

However, several limitations warrant attention. The small 

sample size of physiological data presents a significant 

challenge, as it limits the statistical power of the analysis 

and the generalizability of the findings. With a larger 

sample, the robustness of the correlations between 

environmental factors and physiological responses could be 

more confidently assessed. Additionally, the sample was 

collected within a limited timeframe, which may not have 

captured the full range of seasonal variations or the long-

term effects of environmental stimuli. Weather variability 

and other confounding factors, such as noise or traffic, could 

have influenced physiological readings, further 

emphasizing the need for more controlled and longitudinal 

studies to account for these factors. 

The voxel-based assessment’s resolution was another 

limitation, as it may not have fully captured the fine-grained 

spatial dynamics of the study zone. Future studies could 

benefit from higher-resolution data collection methods and 

more sophisticated spatial analytics to provide deeper 

insights into urban form and its effects on human 

experience. Moreover, the analysis did not incorporate 

socio-economic variables, such as income levels or 

population density, which could have influenced the 

participants' emotional responses. Future research should 

explore how these socio-economic factors interact with the 

physical environment to shape individuals' experiences in 

urban spaces. 

Future research should build on these findings by 

addressing the limitations discussed. One critical avenue for 

future exploration is to investigate the role of green space 

interventions in altering emotional states and physiological 

responses. Specifically, how do green infrastructure 

implementations, such as parks or green rooftops, influence 

arousal levels and heart rate in similar urban zones? Another 

important direction is the exploration of specific urban 

design interventions that could enhance pedestrian 

experiences, such as traffic calming measures or 

introducing more shaded areas. Understanding the potential 

impact of these interventions on human well-being will be 

crucial for advancing urban planning practices that 

prioritize health and sustainability. 

Longitudinal studies are also needed to assess how 

environmental factors evolve and how these changes affect 

human health. For example, tracking seasonal changes in 

temperature, humidity, and pollution levels could provide 

valuable insights into how individuals adapt to fluctuating 

conditions and how urban design can mitigate negative 

impacts on health. Additionally, incorporating qualitative 

data from residents, such as perceptions of safety and 

community well-being, would offer a more holistic view of 

how urban environments influence emotional experiences. 
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In conclusion, this study contributes significantly to the 

growing field of neuro-urbanism by demonstrating the 

complex relationships between urban environments, human 

physiology, and emotional experiences. While the current 

study has limitations, the insights gained provide a 

foundation for future research that will continue to refine 

our understanding of how urban design can foster healthier, 

more resilient communities. We can further develop 

evidence-based design strategies that prioritize human well-

being and environmental sustainability by addressing these 

limitations and pursuing more targeted research questions. 
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