

RESEARCH PAPER Homepage: https://cste.journals.umz.ac.ir/
Contrib. Sci. & Tech Eng, 2024, 1(4) DOI: 10.22080/cste.2025.28329.1009

© 2025 by the authors. Licensee CSTE, Babolsar, Mazandaran. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC-BY) license (https://creativecommons.org/licenses/by/4.0/deed.en)

ISSN 3060-6578

Intuitive AsyncAPI Modeling: Design and Evaluation of a Purpose-Built

Graphical Editor

Leila Samimi-Dehkordi 1*, Delaram Nikbakht Nasrabadi 2

1 Assistant Professor, Department of Computer Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, Iran.

2 Master Student (if applicable), Department of Computer Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, Iran.

Article Info

Received 04 January 2025

Accepted 21 January 2025

Available online 07 March 2025

 Abstract:

This paper explores the challenges in developing AsyncAPI specifications by presenting the

design and evaluation of a dedicated graphical editor. This research aims at enhancing usability

and productivity and reducing errors associated with AsyncAPI modeling compared to traditional

textual and tree-based approaches. The research method involved the design of a graphical editor

integrated into the Eclipse environment using Eclipse Sirius with a model-driven development

approach based on the Ecore metamodeling framework. The evaluation was based on four case

studies with varying levels of complexity and a questionnaire for 40 participants in which the

graphical editor was compared to YAML and tree-based representations regarding its

understandability, proneness to errors, and modeling efficiency. The discussion focused on the

users' feedback. The results show that the graphical editor significantly improves usability and

reduces errors, particularly for complex cases, thus facilitating a faster grasp of component

interrelationships and efficient error detection. While the editor was generally positively assessed,

some problems related to scalability for large models and the Eclipse-based infrastructure were

reported. In summary, this study illustrates the capacity of graphical modeling to revolutionize

AsyncAPI development by providing a more intuitive and effective alternative to conventional

textual approaches; however, subsequent research must focus on scalability and platform

accessibility in order to enhance widespread utilization.

© 2025 University of Mazandaran

Keywords:

AsyncAPI;

Graphical Modeling Editor;

Usability;

User Experience;

Message-Driven Architecture.

*Corresponding Author: samimi@sku.ac.ir

Supplementary information: Supplementary information for this article is available at https://cste.journals.umz.ac.ir/

Please cite this paper as: Samimi-Dehkordi, L., & Nikbakht Nasrabadi, D. (2025). Intuitive AsyncAPI Modeling: Design and Evaluation

of a Purpose-Built Graphical Editor. Contributions of Science and Technology for Engineering, 1(4), 44-57.

doi:10.22080/cste.2025.28329.1009.

1. Introduction

Asynchronous, message-driven architectures are one of

the cornerstones of most modern distributed systems,

enabling communication between scales and resilient

software components. In these systems, the key to finding a

good message-passing in throughput and latency is to

implement, set up, and control a communication interface

[1]. It provides developers with a standard way to write and

document these interfaces and empowers the community

with the tools necessary to define event-driven

interoperability with ease. As AsyncAPI became more

prevalent in micro-services architecture, developers needed

tools to create, edit, and manage specifications [2].

Although the textual syntax of AsyncAPI can be

expressive and powerful, developers may find it challenging

to understand the specification's intricacy [3]. To tackle this

issue, a recent study investigated the use of graphical

editors to design AsyncAPI definitions [4]. These types of

editors help limit mistakes, improve the user experience,

and make the big-picture flow of events around a graphical

representation of the underlying data model much more

efficient [5].

The paper on “model-driven development of asynchronous

message-driven architectures with AsyncAPI” is one of

several noteworthy contributions in this area [4]. This

research discussed the pros and cons of graphical syntax and

textual syntax to represent AsyncAPI specs. It emphasized

some advantages of graphical editors such as minimizing

errors and intuitive modeling. It also mentioned some

challenges with adapting AsyncAPI-specific aspects using

Ecore annotations. The flexibility offered by this approach

was valued by those familiar with metamodeling, but it was

challenging and less available to those who were not. The

aforementioned study's limitations were associated with

Ecore annotations rather than graphical tools. As an

illustration, participants expressed that manually annotating

models was cumbersome. As the model got bigger, the effort

required to connect their annotations to specific sections of

the code became too much to handle. While the graphical

editors were recognized for their abstractions and ease of

use, it was balanced out by an annotation-based approach

https://cste.journals.umz.ac.ir/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
https://foreign.umz.ac.ir/
https://cste.journals.umz.ac.ir/

Samimi-Dehkordi et al/Contrib. Sci. & Tech Eng, 2024, 1(4)

45

that limited casual modelers from being able to access and

efficiently work with the models. Results like these validate

the need for a more intuitive and sophisticated graphical tool

that removes the “barrier” while retaining much of the

power of visual modeling.

Thus, the present work aims to create and validate a new

tool that graphically aids in the specification of AsyncAPI.

By removing the need for manual annotations and providing

a more uniform and effective modeling experience, the

suggested editor overcomes the drawbacks of earlier

methods. It guarantees compatibility with current

development environments, offers streamlined editing

processes, and enables integrated management of

AsyncAPI-specific data. By reducing complexity and

improving usability, this editor will help developers with

different skill levels intuitively create and maintain

AsyncAPI specifications.

The purpose of this study is to address the following

research questions:

RQ1: Is the graphical editor more usable, and does it lower

the learning curve for developers, compared to tree-based

representations and YAML?

RQ2: Does the graphical editor reduce errors compared to

both tree-based and YAML approaches for AsyncAPI

modeling?

RQ3: How do various representations, including

graphical, tree-based, and YAML-based formats, compare

in terms of efficiency and user experience in AsyncAPI

modeling?

The study intends to analyze the new editor's practical

sense concerning the AsyncAPI modeling process through

these research questions. In addition to eliminating tedious

tasks to make modeling more interactive and efficient, all of

those features that users can interact with at a high level are

put in the editor.

The rest of the paper is structured as follows: Section 2

introduces a motivating example. Section 3 provides a

detailed literature review of the AsyncAPI tooling and

graphical modeling. Section 4 describes the

design/development process that led to the proposed

graphical editor, along with important features and

architectural choices. In section 5 we present the evaluation

methodology as well as user studies and metrics used to

evaluate the editor with respect to existing methodologies.

Section 6 details and offers the results of the analysis, while

Section 7 discusses the implications for the research

findings and potential limitations of the approach. Section 8

provides the conclusion, summarizing our contributions and

directions for future work.

2. Motivating Example

Asynchronous communication patterns are used in

designing scalable and robust software systems as the world

grows more interconnected. Asynchronous messaging

frameworks are becoming essential to contemporary

software development, from event-driven architectures in

micro-services to Internet of Things platforms that process

data streams in real-time [6]. AsyncAPI is one of the

specifications that has emerged to describe and document

such systems in a more structured format, specifying how

messages are exchanged, which channels are used, and the

event-driven business processes [2]. However, like with

most domain-specific languages, AsyncAPI is a text-based

language where the API contract is defined in YAML or

JSON format and hence can be overwhelming for

developers who might not be familiar with these

syntaxes/complex architectures [4]. Now to understand how

AsyncAPI would be, let us consider the IoT system with

temperature and humidity sensors that communicate

asynchronously with the central servers (Figure 1): There

are two sensors: a temperature sensor connected over a

channel and reports its integer temperature in degrees

Celsius, and another would be a humidity sensor that would

report its percentage in number format.

Figure 1. An IoT sensor data flow using the MQTT protocol,

as defined by an AsyncAPI specification

Figure 2 shows this system is documented using

AsyncAPI. In the example, the AsyncAPI code defines an

API for an IoT sensor system that publishes temperature and

humidity data. It supports asynchronous communication

over the MQTT protocol. It creates two channels in the

channels part: one for temperature updates and the other for

humidity updates. Every communication channel has a

message object that describes what can be published on that

channel. The attributes sensorId, value, and timestamp are

all representative of important sensor information. The

servers section defines the MQTT broker serving those

messages. With AsyncAPI you may be losing detail on the

contract guaranteeing interoperability between the sensor

and the subscribers. Basically, at its core, this is some code

that describes the data flowing out of the IoT sensor in a

machine-readable manner, which ultimately makes it

simpler to build applications based on this data for

developers.

Once the AsyncAPI specifications for a system are

established, they can be reused as part of any of the

following steps of the system development and deployment

life cycle: 1) server and client implementation, 2) code

generation, 3) testing and validation, 4) integration with

other systems.

The description is quite complex and contains a lot of

details, but it is somewhat complicated in case users are not

familiar with structured formats and the system could also

get complicated as it grows. Moreover, adopting such

representations typically involves a long-term development

Samimi-Dehkordi et al/Contrib. Sci. & Tech Eng, 2024, 1(4)

46

cycle and a steep learning curve new users have to go

through.

asyncapi: 2.0.0
info:
 title: IoT Sensor API
 version: 1.0.0
 description: temperature and humidity sensors
servers:
 production:
 url: 'mqtt://iot.example.com'
 protocol: mqtt
channels:
 temperature:
 description: Channel for temperature updates
 subscribe:
 summary: Receive temperature updates
 message:
 contentType: application/json
 payload:
 type: object
 properties:
 sensorId:
 type: string
 description: Unique id of sensor
 value:
 type: number
 description: temperature in Celsius
 timestamp:
 type: string
 format: date-time
 description: Time for the reading
 humidity:
 description: Channel for humidity updates
 subscribe:
 summary: Receive humidity updates
 message:
 contentType: application/json
 payload:
 type: object
 properties:
 sensorId:
 type: string
 description: Unique id for the sensor
 value:
 type: number
 description: humidity percentage
 timestamp:
 type: string
 format: date-time
 description: Time for the reading

Figure 2. The AsyncAPI specification for IoT sensors

To address the mentioned limitations, we present the

model-based approach proposed in the current paper for the

representation of AsyncAPI specifications. In a sense, this

creates visual models, allows graphical editing of

inappropriate editors, and makes the interface much more

user-friendly, intuitive, and error-reducing. This strategy not

only encourages more intuition but also enables better

collaboration among groups and the efficient refinement of

the iterative pattern in complex systems.

3. Related Work

Tools and approaches that make asynchronous API

development and management easier have gained a lot of

attention due to the growing usage of asynchronous

message-driven architectures [7]. AsyncAPI has emerged as

a highly intriguing standard for defining and documenting

event-driven communication in this context [8]. AsyncAPI

gives developers a rich framework to describe message

exchanges as it is specifically made for asynchronous

interactions, even though it is based on OpenAPI principles

[9]. AsyncAPI specifications offer benefits, however, they

are also basically complicated, which causes problems,

particularly for inexperienced developers who use its textual

syntax [4].

One of the primary subjects of discussion in the AsyncAPI

community is lowering cognitive load and the possibility of

errors when reading textual representations. Although text

editors offer greater flexibility and specificity, they

necessitate a thorough understanding of the AsyncAPI's

syntax and structure [10]. There are tools, like the AsyncAPI

Generator and AsyncAPI Studio, which aim to help

developers create and validate their specifications more

easily. Most of them, however, rely on textual input and can

be quite error-prone and tedious for anyone not familiar

with the intricacies of AsyncAPI.

To overcome the limitations of textual tools, researchers

have proposed graphical editors as a complementary

approach [11]. Graphical editors use visual modeling

techniques for the representation of API specifications,

providing developers with the workspace of abstract

representation of message flows, schemas, and bindings

[12]. This reduces the risk of syntax errors by providing

stakeholders from various engineering backgrounds using a

more abstract understanding of the system, facilitating

better communication and comprehension.

In this regard, model-driven development of asynchronous

message-driven architectures with AsyncAPI is a significant

step forward. The seminal work in this field is called

“Model-driven development of asynchronous message-

driven architectures with AsyncAPI” [4]. It demonstrated an

editor based on Ecore annotations and conducted user

research to validate it. According to the study participants,

the graphical syntax is a more advantageous and visual

method of creating AsyncAPI definitions, particularly when

bootstrapping a working specification. The editor's utility

could be increased by simply integrating it with the Eclipse

development environment.

However, the study by Gómez et al. [4] also found some

limitations of the Ecore-based editor. A critical issue was

that it relies on metamodel annotations to provide

AsyncAPI-specific information. This made it very powerful

for advanced users, but it posed a significant hurdle for most

users with limited metamodeling knowledge. The

connection between annotations and code generation was

not always clear, requiring users to expend additional effort

in figuring out the impact of their models. The second

difficulty that was reported in this category was that the

graphical modeling is typically point-and-click, which is

slow and prone to error: “Creating and editing specifications

was tedious and sometimes also for complex systems [in

sets of graphical modelers]. This issue means that graphical

editors need to start evolving to contain better workflows

and more tools that help repeat tasks. Furthermore, even

though the specification can be discussed at a more abstract

level using the graphical view, it is not always possible to

understand its details without switching between the textual

and graphical representations.

Samimi-Dehkordi et al/Contrib. Sci. & Tech Eng, 2024, 1(4)

47

In parallel, model-driven development (MDD) has proven

to be a partly addressed area for a graphical tool for studies

of system complexity [13]. MDD focuses on higher-level

abstractions with automation to accelerate development

processes. As a sort of comparison, tools like UML-based

editors or domain-specific modeling languages (DSMLs)

have been successful; a new sort of model is being

developed, only not to do with code [14, 15]. While these

principles are applicable in the context of AsyncAPI, they

need to be adjusted about certain features of AsyncAPI that

are related to schema validation, protocol bindings, and

code generation [3, 4, 16].

Effective design techniques are revealed by the use of

graphic editing tools in various domains, such as SysML

(Systems Modeling Language) and BPMN (Business

Process Model and Notation) [5, 17]. These tools are

designed with usability, modularity, and integration into

existing toolchains, all of which are also aspects of

AsyncAPI tooling. However, the unique difficulties of

asynchronous APIs—like simulating dynamic message

flows and event-based communication—emphasize the

necessity for customized solutions.

Table 1 compares various approaches in the context of

graphical editing capabilities, AsyncAPI support, and code

generation. Our method stands out by focusing on the

design of a graphical editor tailored for AsyncAPI

specifications. This approach leverages the code generation

engine outlined in the original paper to automate the

creation and implementation of message-driven

infrastructures. By integrating graphical modeling with

AsyncAPI compliance, our method enhances usability

while streamlining the development process for

asynchronous architectures.

Table 1. Comparison of related work

Source
Graphical

Editing

AsyncAPI

Support

Code

Generation

Arslan et al.
[14]

Discusses
graphical

modeling for

IoT-based
transportation.

Not specified. Not specified.

Bedini et al.
[18]

Proposes

graphical editor
creation with

Eclipse Sirius.

Not specified.

Focuses on

editor

generation.

Budinsky
[19]

Introduces EMF
supporting

graphical

modeling via
GMF.

Not specified.

Provides

extensive code

generation.

David et al.
[15]

Analyzes tools

with graphical
editing

capabilities.

Not specified.

Discusses code

generation

across tools.

Gómez et al.

[4]

Proposes editors

for asynchronous
architectures.

Supports
AsyncAPI

(unspecified
versions).

Automates

message-
driven design.

Lercher et

al. [8]

Discusses micro

service API
evolution, no

focus on

graphics.

Not specified. Not specified.

Ordoñez et

al. [13]

Reviews MDE

approaches with
Not specified.

Discusses

accessibility-

graphical

modeling.

related code

generation.

Oriol et al.

[3]
Not specified.

Focuses on

AsyncSLA

for
agreements.

Not specified.

Rabii et al.
[5]

Explores

prototyping
graphical editors

for DSLs.

Not specified.

Discusses

prototyping

methods.

Ray [12]
Highlights visual
programming for

IoT applications.

Not specified. Not specified.

Silva [2] Not specified.

Suggests

AsyncAPI-

first design.

May improve

developer

experience.

Ternes et al.
[11]

Analyzes UI

design in

modeling tools.

Not specified. Not specified.

Tzavaras et

al. [9]
Not specified.

Discusses

OpenAPI for

the Web of
Things.

Not specified.

Verbruggen
and Snoeck

[17]

Reviews

graphical
modeling in

practitioner

experiences.

Not specified.
Discusses
MDE code

generation.

Wang et al.
[16]

Not specified.

Explores

AsyncAPI

extensions.

Not specified.

Zafar et al.

[10]

Reviews trends

in MDE

graphical
modeling.

Not specified.

Discusses

domain-

specific code
generation.

4. Design and Development of the Graphical
Editor

Motivated by providing a user-friendly, efficient, and

precise tool for modeling asynchronous, message-driven

architectures, the proposed graphical editor for AsyncAPI

specifications has been developed. Built on top of the

Eclipse ecosystem using Eclipse Sirius [18], it follows a

model-driven development (MDD) approach based on the

Ecore metamodeling framework [19]. Such a choice allows

for interoperability with existing well-known tools,

standards, and workflows yet still allows for customization

to handle efficiently some specific issues related to

AsyncAPI.

4.1. Architecture Overview

The editor's architecture is founded on three fundamental

elements: 1) Ecore-based Metamodel, 2) Graphical

Interface, and 3) Code Generation Module. The underlying

Ecore metamodel defines the structure of AsyncAPI

elements. It includes critical abstractions for components.

The graphical interface is designed with Eclipse Sirius, this

component provides an intuitive drag-and-drop

environment to create, edit, and visualize AsyncAPI

elements, including channels, messages, schemas, and event

flows. It allows users to visually represent connections, like

the bindings of messages to channels or associations of

schemas. The editor uses Model-to-Text (M2T)

transformations to generate valid AsyncAPI definitions

from graphical models. This transformation guarantees a

consistent relation between the visual model and generated

artifacts, reducing manual work and easing syntax errors.

Samimi-Dehkordi et al/Contrib. Sci. & Tech Eng, 2024, 1(4)

48

We design the graphical interface for the metamodel of the

AsyncAPI in Gómez et al. [4].

Figure 3 illustrates a process of generating code based on

an AsyncAPI specification. The AsyncAPI metamodel

serves as a template for defining the structure of an

AsyncAPI specification. A definition of M2T (Model to

Text), a set of rules for transforming a model into

programming code, is applied to the metamodel and an

instance of an AsyncAPI model. The result of this

transformation step is Java programming code. An

AsyncAPI model can be represented in different forms, such

as a tree-structured format, a graphical representation, and a

text-based format in YAML. The process is thus enabled for

the automatic generation of code from high-level

specifications. It enhances reusability and decreases the

development time.

Figure 3. Process of generating code based on the AsyncAPI

specification

The graphical editor significantly enhances AsyncAPI

modeling by adding several important features and

innovations. First, it reduces errors through visual

validation and implicit rule enforcement. Second, it eases

the management of annotations by abstracting away

complex Ecore annotations into friendly dialogs. Third, the

framework exhibits various levels of abstraction,

facilitating the visualization of the overall system

architecture and the detailed interactions among

components. Furthermore, its seamless integration within

the Eclipse ecosystem enhances the development

experience. Last, the emphasis on productivity is evident

through its drag-and-drop interface and automation of tasks,

effectively addressing the challenges typically associated

with traditional modeling tools.

The graphical interface of the editor is built on top of

Eclipse Sirius, which provides a rich framework for

building domain-specific graphical editors. The following

key features of Sirius are employed:

• Metamodel-based Design: Sirius uses the Ecore

metamodel to define AsyncAPI concepts.

• Customizable Diagrams: Users can design tailored

diagrams to visualize AsyncAPI structures.

• Real-time Validation: Sirius ensures immediate feedback

on the model’s integrity.

The adoption of Sirius not only accelerates the editor's

development but also ensures extensibility and scalability

for future enhancements.

In summary, the proposed graphical editor uses Eclipse

Sirius in combination with model-driven development

methods to enable the creation of AsyncAPI specifications.

The new features described, are targeting the reduction of

errors and enhancement of user experience and productivity,

making it one of the most important tools for developers

working on asynchronous communication protocols.

Integration with a robust Ecore-based metamodel,

automated code generation, and intuitive graphical design

represents a significant step within the AsyncAPI

ecosystem. Table 2 summarizes key AsyncAPI concepts

along with concise descriptions and graphical notations.

Table 2. The key concepts of AsyncAPI

 Description Notation

A
sy

n
cA

P
I The root document object of an API definition

combines resource listing and API declaration

into a single document. It includes fields like
asyncAPI (specification version), info, servers,

channels, and components.

-

In
fo

 Provides API metadata, including title, version,

description, terms of service, contact information,
and license details.

S
er

v
er

s

A map of Server objects, each representing a

message broker or similar program, detailing
URLs, protocols, security configurations, and

supporting variable substitution. For each server,

a message broker, capturing details such as URL,
protocol (e.g., HTTP, MQTT, Kafka), protocol
version, description, and variables are defined.

C
h
an

n
el

A map holding relative path names and individual

Channel Item objects, representing topics, routing

keys, event types, or paths, depending on the
protocol or technology used. Each item describes

the operations available on a single channel,

including fields like description, subscribe (an
Operation object), publish (an Operation object),

and parameters.

O
p

er
at

i

o
n

Describes a publish or subscribe operation,

documenting how and why messages are sent and

received, with fields like operation ID, summary,
description, and message.

M
es

sa
g
e

Describes a message received on a given channel

and operation, specifying fields such as name,

title, summary, description, and payload (which
can be of any type but defaults to a Schema

object).

S
ch

em
a

Defines input and output data types, including

objects, primitives, and arrays. It is a superset of

the JSON Schema Specification Draft 7, with

fields like title, type, enum, properties, maxItems,
minItems, and items.

R
ef

er
en

ce

A simple object allowing referencing other

components in the specification, both internally

and externally, containing only the $ref field,
which is a URI.

C
o

m
p
o

n
en

ts

Holds a set of reusable objects for different
aspects of the AsyncAPI definition, such as

schemas, messages, parameters, operationTraits,

and messageTraits, which can be referenced using
a Reference object.

These concepts collectively define the structure and

elements of an AsyncAPI document, facilitating the

description and documentation of asynchronous APIs.

Samimi-Dehkordi et al/Contrib. Sci. & Tech Eng, 2024, 1(4)

49

Figure 4 appears to be a screenshot of the designed

graphical editor being used to create an AsyncAPI

specification. The key components and their roles are as

follows.

1. Palette: (on the right side) It contains a variety of elements

that can be dragged and dropped onto the diagram to

create the AsyncAPI specification. These elements

include:

o Info: For basic information about the API, such as title,

version, and contact information.

o Server: To define the server URL and protocol.

o Channel: To define communication channels, such as

MQTT topics.

o Operation: To specify the actions that can be performed

on a channel (publish, subscribe, etc.).

Figure 4. A snapshot of the designed graphical editor

o Message: To define the structure of messages exchanged

over channels.

o Schema: To define the data structure of messages.

o Parameter: To define parameters for operations.

o Component: To define reusable components.

o Operation Trait: To define traits that can be applied to

operations.

o Message Trait: To define traits that can be applied to

messages.

2. Diagram: This is the main area where the AsyncAPI

specification is visually constructed. Elements from the

palette are dragged and dropped onto the diagram to

create the desired structure. The diagram provides a clear

visual representation of the API's components and their

relationships.

3. Properties View: This view displays the properties of the

selected element on the diagram. It allows users to modify

the properties of elements, such as the name, description,

and data type.

The graphical editor helps developers create and visualize

AsyncAPI specifications in a user-friendly way. It provides

a visual representation of the API's structure, making it

easier to understand and maintain. By using a drag-and-drop

interface and a palette of predefined elements, the editor

streamlines the process of creating AsyncAPI

specifications.

5. EVALUATION

5.1. Evaluation Methodology

To evaluate the applicability and usability of the proposed

graphical editor for AsyncAPI modeling, we have

developed a methodology based on implementing real-

world case studies and collecting participant feedback

through questionnaires and interviews. Unlike purely

conceptual evaluations, our approach emphasizes practical

implementation and user-centered assessment to gain

deeper insights into the editor’s effectiveness.

The testing activity will begin by creating four real case

studies—each representing increasing orders of complexity.

Scenarios that will be addressed as part of these case studies

include single-channel message flows, multi-channel event

sources, complex message schemas, and multiple bindings.

Each case study will be implemented through the use of the

proposed graphical editor to exhibit features and

characteristics in actual scenarios. By emphasizing practical

applications, we ensure that the results are pragmatic and

represent the potential difficulties that developers may face

during real-world implementation.

To test usability, we will recruit participants with a

background in computer science to assess the clarity,

understandability, and friendliness of the outputs produced

by the editor. This will be performed with the help of

structured questionnaires supported by follow-up

interviews. Participants will examine graphical models,

tree-structured hierarchical representations, and YAML

Samimi-Dehkordi et al/Contrib. Sci. & Tech Eng, 2024, 1(4)

50

code for the same case studies. They will be able to give

their assessments based on the set criteria, which consist of

clarity, understanding, capability of error identification, and

perceived effectiveness. Through a Likert scale, this will

allow quantitative assessment, while qualitative data can

also be obtained through open-ended questions and

interviews that explain in-depth their difficulties and

preferences.

Mixing the scenarios modeled in real life with the user-

centered feedback approach ensures a complete evaluation.

The results shall help understand the applicability and

usability of the editor; they will guide further improvement

and refinement. That would also open the road for deeper

evaluations in successive studies using direct hands-on

usage and task-based assessment.

5.2. Case Studies for Study Applicability

The case studies are selected from the website of the

AsyncAPI studio tool*. As shown in Table 3, the four case

studies were selected to showcase the versatility and

applicability of our proposed graphical editor across a

diverse range of asynchronous communication scenarios

and protocols. They represent varying levels of complexity

in terms of message structures, communication patterns

(e.g., publish/subscribe, request/reply), and underlying

protocols (WebSocket, MQTT, AMQP).

Case 1: Real-Time Financial Data Exchange

The first case concerns the API, using WebSocket

technology to support real-time financial data exchange

with regard to currency trading. In this system, two-way

communication between the client and server is effectively

achieved through the use of the WebSocket protocol,

enabling updates in real-time about market information. It

supports a variety of message formats, system status

notifications, handling of subscriptions, and even heartbeat

signals, hence this ensures continuous and reliable

connectivity. It has an efficient architecture with a message

transmission in a flat configuration for better fast parsing

and lower complexity. The framework is optimized with

low latency and high throughput in mind for use cases

demanding fast access to dynamic financial information,

such as trading systems or market surveillance applications.

Case 2: IoT-Based Smart Streetlight Management

The second case explores the intelligent infrastructure

application using an MQTT-based API for the management

and monitoring of IoT-enabled streetlight systems. This API

is tailored to operate efficiently under resource-constrained

environments, hence suitable for low-bandwidth networks

that prevail in most IoT applications. It supports

functionalities such as remote start/stop of the streetlights,

dimming, and real-time monitoring of ambient parameters

such as light intensity. API key-based authentication and

OAuth2 authorization based on hierarchical topics, schema-

based nested payload structures assure well-defined and

interpretable data exchanges. The implemented security

* https://studio.asyncapi.com/

mechanisms ensure that the communication is secure. Each

local government faces such a big challenge in the tasks of

centralized control and observation of the distributed

systems for efficient operation, so this designed API is very

suitable to be used in smart city initiatives.

Case 3: User Registration and Authentication Messaging

API

The third case is a messaging API, designed for user

registration and authentication services, using the MQTT

protocol to ensure effective message delivery. The API

provides a lightweight event-driven architecture in which

events about users—like registrations and logins—are

handled by special channels. Specifically, it defines two

main channels: one for user registration events and another

for managing login operations. These channels allow

subscribed clients to see and analyze associated events

almost in real time. The structure of the message payload is

defined via a schema and specified in JSON format, which

ensures the consistency and clarity of the data being

transmitted. The registration channel's payload consists of

the following user attributes: username, email, and

password. In the same manner, the login channel logs the

username and password used for the authentication. With

the use of the MQTT protocol, this API has been optimized

for the most efficient, reliable, and scalable communication;

it is particularly suitable for event-driven architectures, such

as notification systems, account management applications,

and user observation activities. Moreover, this robustness is

further increased with the integration of schema validation,

making data interchange between producer and consumer

services seamless.

Case 4: IoTBox Monitoring API

The IoTBox Monitoring API is designed to facilitate the

monitoring and control of IoTBox devices by providing

real-time status updates. Defines the channels used by

publish and subscribe to an IoTBox device's operating state:

online, offline, maintenance, or even error. The API makes

use of AMQP for the communication between clients and

devices where clients can connect to IoTBox devices

identified by their unique IDs. Key features include

monitoring the status of devices, publishing performance

updates, and in particular, subscribing to real-time status

changes. This API is constructed on its path toward

flexibility and scalability through the following multiple

constituent parts: operation traits in the standardization of

behavior—monitoring or resetting IoTBox devices. In

message traits, a set of reusable properties is defined. In

schemas, one for the device status update; one for custom

messages including a timestamp and status; the structure of

the status header. Named parameters and schemas,

therefore, guarantee the consistency of the system and allow

configurations for a device.

Among these four, Kraken WebSockets API is the simplest

one designed for basic functionality, which updates

financial data in real time. The structure of this API is very

Samimi-Dehkordi et al/Contrib. Sci. & Tech Eng, 2024, 1(4)

51

flat, and there are not many message types; most of them are

repetitive messages, such as ping and pong messages. Thus,

it is well-structured and easy to work with. Contrasting it,

the Streetlights MQTT API is much more complicated and

provides a lot of functionality, such as controlling,

monitoring, and dimming. It uses nested payloads,

hierarchical topics, and schema-based data definition-

enriching capability, but at the same time, it increases the

difficulty in its maintenance. Security mechanisms such as

API keys and OAuth2 further contribute to its overall

complexity.

Table 3. Comparison of the case studies

Feature Case 1 Case 2 Case 3 Case 4

Protocol
WebSock

et (wss)
MQTT MQTT AMQP

Purpose

Real-time

market

updates

Smart
streetlight

managem

ent

User
registration

and login

events

IoT device

monitoring

and control

Data

Structure

Flat

payloads

Nested,

schema-

based
payloads

Schema-
defined for

user attributes

Nested,

schema-

based
payloads

Event

Handling

Basic

events

Extensive

(e.g., dim,

turn
on/off)

Dedicated to
registration/lo

gin events

Status

updates
(e.g.,

online/offli

ne)

Security None

API key,

OAuth2,

OpenID
Connect

None None

Target

Audience

Financial
applicatio

ns

IoT/smart
city

systems

User-based

applications

and
workflows

IoT

developers
and large-

scale

solutions

Complexi
ty

Low

High due

to
hierarchic

al topics

Moderate Moderate

5.3. Questionnaire for Study of Usability

A structured questionnaire (Table 4) was designed and

directed to developers and modelers to discover how

different representations (graphical, tree-based, and code-

based) are usable, efficient, and error-prone when

performing AsyncAPI modeling. This questionnaire was

constructed to respond to three research questions: whether

the graphical editor increases usability and reduces the

learning curve, whether it minimizes errors concerning tree-

based and YAML representations, and what the comparison

of representations is according to the efficiency of users and

their subjective experiences.

Table 4. Questionnaire for the usability of the graphical

editor

Question Possible answers

1 Education Level

2
Have you ever come across

AsyncAPI?
Yes/No

3

How familiar are you with

asynchronous
communication?

1 to 5

4
How familiar are you with

YAML?
1 to 5

5
How familiar are you with

JSON?
1 to 5

6
How familiar are you with the

Ecore modeling tool?
1 to 5

7
How familiar are you with

Graphical Editors?
1 to 5

8
How would you rate your

understanding of the code?
1 to 5

9

How would you rate your

understanding of the tree

model?

1 to 5

10

How would you rate your

understanding of the
graphical model?

1 to 5

11

How long do you estimate it

would take you to understand
the graphical model?

Number of minutes

12

How long do you estimate it

would take you to understand
the tree model?

Number of minutes

13

How long do you estimate it

would take you to understand
the code?

Number of minutes

14

Is a graphical model is

created faster than a tree
model or generated code?

Yes/No/Not sure

15
Which did you understand the

fastest?

graphical/tree-based/code

views

16
Which method is less prone

to errors?

graphical model/tree model

/code

17
Which of the following

methods do you find easier?

Drag and drop/ Point-and-
click/ Coding all commands

and data

18

Which environment is more
stable?

Stability: The different

elements of the user interface
should be used in a uniform

manner.

graphical editor/ tree-based

editor/ code editor

19
How suitable is the design of

our graphical editor?
1 to 5

20

If the graphical model editor

changes, what would be

preferred?

reducing

complexity/increasing clarity/
adding new features/no

changes

21
If you were to design an
AsyncAPI project, which

method would you prefer?

graphical editor/ tree-based
editor/ code editor/ hybrid

method

22
Please explain the reason for

your choice in a real

AsyncAPI project.

open answer

Subjects were exposed to existing AsyncAPI models,

represented as graphical diagrams, tree-based structures,

and code snippets. The latter asked them to predict the time

needed to work out each representation, rate how well they

understood it, and state their preference for creating models

based on it and its use in error-prone situations. Other

questions assessed participants' prior exposure to

asynchronous communication, YAML, JSON, or other

modeling tools, at least to put their answers into context for

further analysis.

The data reported were analyzed with respect to usability

in terms of learning curve, comprehensibility, time needed

to understand, proneness to errors in terms of user's

perceived reliability, and efficiency, expressed as time

required to understand each representation according to

ease. That multi-faceted approach could provide

comprehensive insights about each modeling method's

perception with its developers.

Samimi-Dehkordi et al/Contrib. Sci. & Tech Eng, 2024, 1(4)

52

To systematically address the research questions, the

questionnaire was designed so that specific questions in the

table directly map to each research question (RQ):

RQ1: Questions 7, 8, and 9 measure participants’

comprehension of the graphical, tree-based, and code

representations. Questions 10, 11, and 12 track the

estimated time it would take for someone to get up to speed

with each representation; these tell us how steep or flat the

learning curve will be. Additionally, Questions 16, 17, 18,

20, and 21 explore participants’ preferences, ease of use,

perceived consistency, and the appropriateness of the

graphical editor. Question 15 evaluates which

representation was understood the fastest, further

contributing to the understanding of usability.

RQ2: Question 16 directly asks participants to identify

which representation they perceive as less prone to errors.

The responses reveal user opinions about the reliability and

likelihood of making mistakes in each method.

RQ3: Questions 10, 11, and 12 provide data on the time

efficiency of each representation by asking participants to

estimate the time taken to understand the models. Question

13 identifies which representation was understood the

fastest. Additionally, Questions 7, 8, 9, 15, 16, and 17

contribute to comparing user experiences, including

comprehension, ease of use, and speed of creation across

methods.

In this way, every question in the questionnaire

corresponds with each of the research questions; thus, the

responses that would be gathered through questionnaires

could be analyzed for substantial answers to the objectives

of this study. This combination of comprehension ratings,

time estimates, and user preferences enables us to

comprehensively assess usability, error-proneness, and

efficiency.

The study involved 40 participants with diverse

educational backgrounds. The majority of participants were

either Master's students (30%) or held a Master's degree

(25%), followed by PhD holders (20%), Bachelor's degree

holders (12.5%), and PhD students (12.5%). Regarding

prior experience with AsyncAPI, a significant majority

(70%) reported having no previous exposure, while 30%

indicated they had encountered it before. Participants' self-

assessed familiarity with asynchronous communication was

predominantly moderate (45%), with smaller proportions

reporting low (20%), very low (15%), high (15%), and very

high (5%) familiarity. Familiarity with YAML was

generally lower, with 40% reporting very low familiarity,

followed by low and moderate familiarity at 27.5% each,

and only 5% reporting very high familiarity. In contrast,

familiarity with JSON was higher, with moderate familiarity

being the most common (37.5%), followed by high (25%),

very high (17.5%), low (12.5%), and very low (7.5%).

Regarding familiarity with the Ecore modeling tool and

graphical editors, the distribution was more balanced. For

Ecore, moderate familiarity was reported by 22.5% of

participants, with high and very high familiarity each

reported by 27.5% and 22.5% respectively, and low and

very low familiarity by 10% and 17.5% respectively. For

graphical editors, moderate familiarity was again most

prevalent (40%), followed by high (32.5%), very high

(17.5%), low (7.5%), and very low (2.5%).

6. Results and Analysis

The results of our evaluation focus on assessing the

applicability and usability of the graphical editor for

modeling AsyncAPI specifications. This section presents

findings from our analysis, which compared participant

feedback on graphical models, tree-based hierarchical

views, and YAML code representations, alongside insights

from the case studies modeled using the editor. The results

highlight the strengths and areas for improvement in the

proposed approach, shedding light on its practical

implications.

6.1. Analysis of Applicability

The assessment starts with the application of the graphical

editor for modeling AsyncAPI specifications using four

different case studies. Each case is studied based on its

complexity and the graphical diagram generated using the

editor. This section includes diagrams that further illustrate

the editor's ability to convey statements at various levels of

complexity while maintaining clarity and efficiency.

Case 1: Kraken WebSockets API

It is a relatively simple API, and that translates into a lower

complexity for the message definition, as shown in Figure

5. The graphical editor captures the flow and the relation

between components very easily, making it easier to

understand the complete system quickly. In this particular

case, the estimated modeling time was approximately 5

minutes, indicating the editor's appropriateness for

straightforward scenarios.

Case 2: Streetlights MQTT API

With more features and nested data structures, this API

adds complexity. Although participants pointed out that

more features like zooming or filtering would improve

usability in these situations, the editor in Figure 6

successfully visualized these elements while preserving

clarity. It took about 15 minutes to complete the modeling

process, demonstrating the editor's ability to handle

moderate complexity with ease.

Case 3: User Registration and Authentication

With fewer nested structures and an emphasis on user-

centric operations, this case demonstrates comparatively

low complexity. By providing a concise synopsis of the

elements and their interactions, the editor facilitated the

modeling process. The estimated modeling time was

approximately 8 minutes, and participants valued the visual

feedback it provided. The graphical model is shown in

Figure 4.

Case 4: IoTBox API

The API of the IoTBox (Figure 7) exposes a relatively

complex system with a fair amount of features and nested

data. The graphical editor made this complexity manageable

and easy to see while also simplifying the identification of

Samimi-Dehkordi et al/Contrib. Sci. & Tech Eng, 2024, 1(4)

53

component dependencies. In this case, the modeling time

was around 12 minutes, proving the editor is capable of

dealing with mid-level complexities effectively. All of these

case studies highlight the editor’s adaptability in handling a

large variety of situations. Moreover, tree-based models are

generated in parallel for all graphical diagrams, meaning the

user has the choice of hierarchical views. Furthermore, you

can open a tree-based model in a graphical editor, and it

automatically creates its graphical version—indicating how

seamless the application is between these two

representations.

6.2. Analysis of Usability

The evaluation of the graphical editor, informed by

participant responses to the questionnaire, provides

valuable insights into its perceived strengths and areas for

improvement. The survey included 40 participants who

responded to a questionnaire to assess their experiences and

perceptions of different AsyncAPI modeling approaches,

focusing on graphical, tree-based, and code-based methods.

Table 5 demonstrates the results. The participants had

diverse educational backgrounds, with the majority holding

a Master’s degree (30%) or a PhD (25%), indicating a

relatively well-educated group with potential expertise in

the field.

Despite this expertise, 70% of respondents reported no

prior experience with AsyncAPI. This unfamiliarity may

have influenced their initial impressions of the tools and

methods being evaluated. Participants were also asked

about their familiarity with key concepts such as

asynchronous communication, YAML, JSON, Ecore

modeling tools, and graphical editors. Responses indicated

varying levels of familiarity, with higher familiarity

generally reported for JSON and graphical editors, while

knowledge of Ecore modeling tools was less widespread.

Figure 5. The graphical model for Case 1

Figure 6. The graphical model for Case 2

Samimi-Dehkordi et al/Contrib. Sci. & Tech Eng, 2024, 1(4)

54

Figure 7. The graphical model for Case 4

Regarding the comprehension of different modeling

methods, participants rated their understanding of the

graphical model significantly higher compared to the tree

model or code. Specifically, 60% of participants agreed or

strongly agreed that they found the graphical model easy to

understand. Additionally, participants estimated that the

time required to understand the graphical model was shorter

compared to other methods, suggesting a lower learning

curve for graphical modeling.

In terms of efficiency, 62.5% of respondents believed that

graphical models were faster to create than tree-based

models or generated code. When asked which

representation they understood the quickest, 67.5% selected

the graphical model, further emphasizing its user-friendly

nature. Similarly, the graphical model was considered less

error-prone, with 62.5% of participants rating it as the most

reliable method compared to tree-based or code-based

approaches. Participants also evaluated the ease of use of

various interaction methods. Drag-and-drop interfaces were

overwhelmingly preferred, with 75% finding them easier

than point-and-click or manual coding. Furthermore, the

graphical editor emerged as the most stable and suitable

environment, receiving 58.8% of the votes for stability and

47.5% as the preferred method for designing real AsyncAPI

projects. A hybrid approach, combining multiple methods,

was also favored by 37.5%, indicating that some

participants saw value in blending different modeling

approaches.

When asked about desired changes to the graphical model

editor, the most common suggestions were adding new

features (35%) and reducing complexity (32.5%). These

recommendations highlight areas for improvement and

reflect the participants’ desire for a more comprehensive yet

user-friendly tool.

Overall, the results suggest that graphical modeling is

perceived as a faster, more intuitive, and less error-prone

method for AsyncAPI projects, especially for users who

may be less familiar with the domain. However, the diverse

responses and preferences for hybrid approaches also

underscore the need for flexible tools that can accommodate

varying user needs and expertise levels.

Table 5. The results of the questionnaire

Q# Answers

Q1
Bachelor (12.5%), Master Student (30.0%), Master (25.0%),

PhD Student (12.5%), PhD (20.0%)

Q2 No (70%), Yes (30)

Q3
Very low (15%), Low (20%), Moderate (45%), High (15%),

Very high (5%)

Q4
Very low (40%), Low (27.5%), Moderate (27.5%), High

(0%), Very high (5%)

Q5
Very low (7.5%), Low (12.5%), Moderate (37.5%), High

(25%), Very high (17.5%)

Q6
Very low (17.5%), Low (10%), Moderate (22.5%), High

(27.5%), Very high (22.5%)

Q7
Very low (2.5%), Low (7.5%), Moderate (40%), High

(32.5%), Very high (17.5%)

Q8
Very low (2.5%), Low (15%), Moderate (27.5%), High

(37.5%), Very high (17.5%)

Q9
Very low (2.5%), Low (12.5%), Moderate (25%), High

(45%), Very high (15%)

Q10
Very low (2.5%), Low (10%), Moderate (27.5%), High

(22.5%), Very high (37.5%)

Q11
Very low (35%), Low (0%), Moderate (57.5%), High (0%),

Very high (7.5%)

Q12
Very low (22.5%), Low (0%), Moderate (52.5%), High (0%),

Very high (25%)

Q13
Very low (10%), Low (0%), Moderate (35%), High (0%),

Very high (55%)

Q14 No (12.5%), Not sure (25%), Yes (62.5%)

Q15
Code (20.0%), Tree Model (12.5%), Graphical Model

(67.5%)

Q16
Code (20.0%), Tree Model (17.5%), Graphical Model

(62.5%)

Q17
Programming (2.5%), Point-and-click (17.5%), Drag and drop

(75.0%)

Q18
Programming Editor (24.7%), Tree Editor (26.5%), Graphical

Editor (58.8%)

Q19
Very low (0%), Low (0%), Moderate (20%), High (57.5%),

Very high (22.5%)

Q20
No changes (15.0%), Increasing clarity (17.5%),

Reducing complexity (32.5%), Adding new features (35.0%)

Q21
Programming Editor (12.5%), Tree Editor (2.5%), Graphical

Editor (47.5%), Hybrid (37.5%)

An open-ended question revealed participant preferences

for AsyncAPI modeling. Those favoring the graphical editor

Samimi-Dehkordi et al/Contrib. Sci. & Tech Eng, 2024, 1(4)

55

cited its ability to streamline complex processes, reduce

cognitive load, and visually group components. Some

preferred tree-based models for simpler projects due to their

straightforward nature. YAML proponents typically had

prior experience with the format but acknowledged its steep

learning curve for newcomers.

Participant feedback on the graphical editor highlighted its

intuitive interface, with drag-and-drop and point-and-click

functionality simplifying model creation and minimizing

errors. The simultaneous generation of tree-based and

graphical models was also appreciated for catering to

diverse user preferences. Real-time validations, like

consistency checks, were praised for improving model

accuracy by enabling quick error identification and

correction.

Participants expressed concerns about the editor's reliance

on Eclipse, and finding installation and configuration

complex, especially for those unfamiliar with the

environment. They suggested web-based or cloud-native

solutions for better accessibility. Additionally, the lack of

features like zooming, filtering, and collapsible sections

made working with large or complex models difficult, and

participants recommended adding these functionalities to

reduce visual clutter and improve usability.

7. Discussion

Overall, the evaluation's findings demonstrated the

advantages and disadvantages of the suggested AsyncAPI

graphical editor while providing concise answers to the

stated research questions. Remarkably, the 40-person

sample size is small and might not be representative of the

general population. Although histograms are excellent for

visualizing distributions, they do not reveal more

complicated relationships between variables. Please refer to

the following correlation analysis (Figure 8) for more

information and correlation of these relationships.

Nevertheless, the participants' experience with the different

AsyncAPI modeling techniques is hardly touched by this

high-level fast.

Figure 8. The heatmap diagram of correlation for key

questions

RQ1: Is the graphical editor more usable, and does it

lower the learning curve for developers, compared to

tree-based representations and YAML?

Based on the correlation matrix analysis, we can conclude

that the graphical editor is slightly more usable than at least

some other representations due to a lower learning curve.

Positive correlations were found between “Is the GM faster

to create?”, “GM understandability” (Q10), “GM

understandability” (Q14), and the general sentiment

towards the "Graphical Editor" (Q7) indicating that

participants found the graphical editor faster and easier to

understand. Furthermore, the positive correlation between

Q15 and Q14, as well as Q10, supports the claim that the

graphical editor improved understanding of the data. On the

other hand, because Q11 (Time to understand GM) is

negatively correlated with Q10 and Q7, it can be concluded

with some certainty that less time was required to

comprehend the graphical editor's functions and

capabilities, indicating a lower learning curve. Additionally,

Q8 (code understandability) had a higher correlation with

Q10 than with Q15, implying that understanding code was

more difficult than understanding its graphical

representation. Together, this evidence points to a more

user-friendly experience enabled by the graphical editor,

which may reduce the learning curve for developers.

RQ2: Does the graphical editor reduce errors

compared to both tree-based and YAML approaches for

AsyncAPI modeling?

The correlation matrix analysis suggests that the graphical

editor is perceived as less error-prone compared to other

approaches. The positive correlation between Q16 (Which

method is less error-prone?) and both Q10 (GM

understandability) and Q14 (Is the GM faster to create?)

indicates that participants associated the graphical editor

with fewer errors and faster creation times. This association

is further supported by the negative correlation between

Q16 and Q11 (Time to understand GM), implying that the

ease of understanding the graphical editor may contribute to

a reduction in errors. The combination of these correlations

strengthens the argument that the graphical editor

effectively minimizes errors in AsyncAPI modeling.

RQ3: How do various representations, including

graphical, tree-based, and YAML-based formats,

compare in terms of efficiency and user experience in

AsyncAPI modeling?

We can comparatively analyze the interrelationship of

different questions to discover the relative efficiency and

user experience for different representations (graph-based,

tree-based, & YAML-based). A clear comparison can be

found by exploring the correlations between the questions

associated with each representation. In this sense, the

comparison of Q10 (GM understandability) to Q8 (Code

understandability) indicates which representation was

easier to understand. Similarly, comparing Q14 (Is the GM

faster to create?) with Q18 (Which approach is more

stable?) and Q16 (Which method is less error-prone?)

provides a holistic view of the efficiency and user

experience associated with each approach. For example, a

Samimi-Dehkordi et al/Contrib. Sci. & Tech Eng, 2024, 1(4)

56

high positive correlation between Q14, Q10, and Q16,

coupled with a high negative correlation between Q11 and

these questions, would strongly suggest that the graphical

editor provides a superior user experience in terms of

creation speed, ease of understanding, and error reduction.

Inter-correlations among all relevant questions provide a

means to achieving this holistic view.

Implications and Limitations

The standardization of graphical representations for

AsyncAPI specifications is significantly impacted by these

findings. As a bridge between domain experts and technical

experts, the graphical editor can encourage broader

AsyncAPI adoption among heterogeneous teams.

Compatibility is ensured by its smooth integration with

current workflows, which reduces the need for significant

retraining or modifications to current toolkits.

Scalability, however, is a problem when simulating big,

intricate systems.

Clarity may be hampered by visual clutter as the number

of components and connections rises. This could be fixed in

the future by implementing sophisticated visualization

strategies like dynamic zooming, hierarchical abstractions,

and selective highlighting. Additionally, less experienced

users faced a steeper learning curve, whereas experienced

modelers found the editor intuitive. Features like context-

sensitive instructions and interactive tutorials could greatly

increase accessibility for more individuals.

Lastly, adding real-time collaboration capabilities and

interfaces that adapt to ranging user levels of proficiency

could improve the editor's usability even more. To confirm

the tool's effectiveness and determine additional areas for

development, future studies should concentrate on testing it

with a variety of user groups in real-world scenarios.

8. Conclusion

In this paper, we studied, designed, and evaluated a

graphical editor specifically designed for AsyncAPI

modeling, considering its feasibility and usability. We

qualitatively showed improvements in the AsyncAPI

specification comprehensibility of the proposed editor

through graphical and tree-based representations and

collected theoretical foundations for more complex

systems. By providing a visual and interactive interface that

helps reduce error rates and a higher level of abstraction,

which improves the modeling experience for most users

already familiar with graphical tools, it fulfills some

important shortcomings of previous approaches.

The findings confirmed that using graphical editing helped

users better understand the situations in which they were

working. All participants agreed that the graphical

representation facilitated faster interpretation of system

structures and relationships. In nature, such support for

graphical syntax demonstrates the second position, and it

not only matches the research query of graphical syntax

encouragements, but it also provides solid proof that this

process is far superior to other alternatives such as tree-

based models or textual representation.

One of the critical contributions of this editor is its

seamless integration into existing modeling environments.

By supporting standard modeling practices while

introducing specific enhancements for AsyncAPI, the editor

demonstrates practical value for novice and experienced

modelers. Its ability to support rapid prototyping and error

detection makes it a valuable tool for streamlining the

development of messaging architectures in various

domains, such as microservices, event-driven systems, and

IoT applications.

While our evaluation demonstrates the effectiveness of the

graphical editor for a range of case studies, further research

is needed to assess its scalability with significantly larger

and more complex AsyncAPI specifications. Performance

and usability could potentially be affected by the sheer

volume of elements in very large models, requiring further

optimization and testing. The editor's current reliance on the

Eclipse platform presents a barrier to entry for users

unfamiliar with this environment. The installation and

configuration process can be challenging for those without

prior Eclipse experience. This contrasts with the trend

towards web-based and cloud-native solutions, which offer

greater accessibility and align with modern software

development practices. Future work will explore migrating

the editor to a more accessible platform to broaden its user

base. As noted by participants in our evaluation, navigating

and manipulating highly complex AsyncAPI models within

the editor can be challenging. The current version lacks

advanced features such as zooming, filtering, and

collapsible sections, which would significantly improve the

user experience when working with large models. These

features are planned for future development to enhance the

editor's usability for complex use cases.

In conclusion, the graphical editor represents a significant

step forward in AsyncAPI modeling, bridging the gap

between technical and domain-specific perspectives. Its

intuitive interface and practical capabilities demonstrate the

potential of graphical syntax to transform how developers

and system architects design and implement messaging

architectures. By addressing the identified limitations and

exploring new avenues for innovation, this approach can

continue to evolve as a foundational tool for modern

software development practices.

9. References

[1] Nowick, S. M., & Singh, M. (2015). Asynchronous design-

part 1: Overview and recent advances. IEEE Design and Test,

32(3), 5–18. doi:10.1109/MDAT.2015.2413759.

[2] Silva, J. (2024). AsyncAPI-First Design for Event-Driven

Architectures: Improve Developer Experience. Master

Thesis, University of Porto, Porto, Portugal. (In Portuguese).

[3] Oriol, M., Gómez, A., & Cabot, J. (2024). AsyncSLA:

Towards a Service Level Agreement for Asynchronous

Services. Proceedings of the ACM Symposium on Applied

Computing, 1781–1788. doi:10.1145/3605098.3636074.

[4] Gómez, A., Iglesias-Urkia, M., Belategi, L., Mendialdua, X.,

& Cabot, J. (2022). Model-driven development of

asynchronous message-driven architectures with AsyncAPI.

Samimi-Dehkordi et al/Contrib. Sci. & Tech Eng, 2024, 1(4)

57

Software and Systems Modeling, 21(4), 1583–1611.

doi:10.1007/s10270-021-00945-3.

[5] Rabii, A., Assoul, S., & Roudiès, O. (2022). Guide to domain

specific language graphical editor prototyping. Computer

Assisted Methods in Engineering and Science, 28(3), 243-

261.

[6] Zhou, S., Sun, J., Xu, K., & Wang, G. (2024). AI-Driven Data

Processing and Decision Optimization in IoT through Edge

Computing and Cloud Architecture. Journal of AI-Powered

Medical Innovations (International Online ISSN 3078-1930),

2(1), 64–92. doi:10.60087/vol2iisue1.p006.

[7] Pedro, B. (2024). Building an API Product: Design,

implement, release, and maintain API products that meet user

needs. Packt Publishing Ltd, Birmingham, United Kingdom .

[8] Lercher, A., Glock, J., Macho, C., & Pinzger, M. (2024).

Microservice API Evolution in Practice: A Study on

Strategies and Challenges. Journal of Systems and Software,

215. doi:10.1016/j.jss.2024.112110.

[9] Tzavaras, A., Mainas, N., & Petrakis, E. G. M. (2023).

OpenAPI framework for the Web of Things. Internet of

Things (Netherlands), 21. doi:10.1016/j.iot.2022.100675.

[10] Zafar, A., Azam, F., Latif, A., Anwar, M. W., & Safdar, A.

(2024). Exploring the Effectiveness and Trends of Domain-

Specific Model Driven Engineering: A Systematic Literature

Review (SLR). IEEE Access, 12, 86809–86830.

doi:10.1109/ACCESS.2024.3414503.

[11] Ternes, B., Rosenthala, K., & Streckera, S. (2021). User

Interface Design Research for Modeling Tools: A Literature

Study. Enterprise Modelling and Information Systems

Architectures, 16(4), 1–30. doi:10.18417/emisa.16.4.

[12] Ray, P. P. (2017). A Survey on Visual Programming

Languages in Internet of Things. Scientific Programming,

2017(1). doi:10.1155/2017/1231430.

[13] Ordoñez, K., Hilera, J., & Cueva, S. (2022). Model-driven

development of accessible software: a systematic literature

review. Universal Access in the Information Society, 21(1),

295–324. doi:10.1007/s10209-020-00751-6.

[14] Arslan, S., Kardas, G., & Alfraihi, H. (2024). On the Usability

of a Modeling Language for IoT-Based Public Transportation

Systems. Applied Sciences (Switzerland), 14(13).

doi:10.3390/app14135619.

[15] David, I., Latifaj, M., Pietron, J., Zhang, W., Ciccozzi, F.,

Malavolta, I., Raschke, A., Steghöfer, J. P., & Hebig, R.

(2023). Blended modeling in commercial and open-source

model-driven software engineering tools: A systematic study.

Software and Systems Modeling, 22(1), 415–447.

doi:10.1007/s10270-022-01010-3.

[16] Wang, H., Wang, G., Gao, J., Hu, J., Li, J., & Zhang, H.

(2023). Enhancing IoT Service Interface Through AsyncAPI

with Extensions. Communications in Computer and

Information Science. Springer, Singapore. doi:10.1007/978-

981-99-4402-6_26.

[17] Verbruggen, C., & Snoeck, M. (2023). Practitioners’

experiences with model-driven engineering: a meta-review.

Software and Systems Modeling, 22(1), 111–129.

doi:10.1007/s10270-022-01020-1.

[18] Bedini, F., Maschotta, R., & Zimmermann, A. (2021). A

generative Approach for creating Eclipse Sirius Editors for

generic Systems. 2021 IEEE International Systems

Conference (SysCon), 1–8.

doi:10.1109/syscon48628.2021.9447062.

[19] Budinsky, F. (2004). Eclipse modeling framework: a

developer's guide. Addison-Wesley Professional, Boston,

United States.

