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Abstract: 

The monthly flow rates of the Chalus River in Mazandaran Province, Iran are predicted using 

the Seasonal Autoregressive Integrated Moving Average (SARIMA) model in this research. The 

SARIMA model was created and verified with MiniTab software by analyzing historical data 

spanning from 2006 to 2023. The modeling process involved checking data stationarity with the 

Augmented Dickey-Fuller (ADF) test, normalizing data using the Johnson Transformation, and 

determining the best SARIMA parameters by analyzing Autocorrelation Function (ACF) and 

Partial Autocorrelation Function (PACF) plots. The SARIMA model with parameters 

(2,0,0)(0,1,1)12 was determined to be the most precise in predicting future outcomes, exhibiting 

a strong R² value and reliable forecasting capabilities. Despite effectively modeling the seasonal 

changes of the Chalus River, the model proved to be inadequate in predicting extreme flow rates. 

The findings indicate that utilizing the SARIMA model proves to be a dependable instrument 

for overseeing water resources in the area, with potential for further investigation into 

integrating SARIMA with alternative approaches to improve forecasting of exceptional 

occurrences. 
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1. Introduction 

Water management decision making process requires 

accurate forecasts of the short-term water demand. This 

short-term water demand forecast can be used in the areas 

of water reservoir design, future studies, and quality 

distribution problems [1]. Precise predictions of river flow 

are essential for various water management systems such as 

irrigation projects, urban development plans, and flood 

control strategies [2-4]. Chalus River as shown in Figure 1 

is a significant river of central-northern of Iran which 

located in the west of Mazandaran province, and originates 

from the northern slopes of the Kandavan and Taleghan 

highlands and flows into the Caspian Sea after traveling 

about 85 kilometers along the Chalus near Deh Farajabad. 

This river with its main branch Hanisak, Makaroud, Dalir 

and Barar and its sub-branches has a catchment area of 1550 

square kilometers. The course of this river is mountainous 

and the river bed is narrow and its flow is rapid and 

torrential [5]. 

The Chalous River plays a vital role in the environmental, 

economic, and social aspects of the region through critical 

applications such as agricultural irrigation, drinking water 

supply, hydropower generation, flood control, tourism and 

recreation, and environmental conservation. Due to the 

importance of Chalous River it is essential to utilize 

scientific methods to forecast the future River flow 

accurately, by using historical data to assist water 

management company and authorities in decision-making 

[1].  

Hydrological data are frequently subject to the influence of 

numerous external factors, resulting in time series that 

demonstrate both linear and nonlinear behaviors [6]. For 

analyzing and forecasting the hydrologic time series in 

recent years, the BoxJenkins time series analysis 

techniques, such as auto-regressive (AR), moving average 

(MA), autoregressive moving average (ARMA), auto-

regressive integrated moving average (ARIMA), and 

seasonal autoregressive integrated moving average 

(SARIMA) have been the primary methods employed [7]. 

The SARIMA model is advantageous due to its ability to 

consider both seasonal and non-seasonal patterns, giving it 

an edge over ARIMA. However, it is constrained by the 

necessity of having a minimum of 50 past data points and 

achieving precise forecasts in a brief timeframe [8–10].  

https://cste.journals.umz.ac.ir/
https://creativecommons.org/licenses/by/4.0/deed.en
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SARIMA models have been previously employed with 

success in predicting hydrological patterns, as evidenced by 

Gharde et al. (2016) who utilized a SARIMA model for 

forecasting Streamflow in the Savitri Basin. Their model 

performance in diagnostic and calibration stages was 

satisfactory, with R value > 0.9, low RMSE, CE nearing 

100, and EV low. This suggests the model's suitability for 

daily streamflow forecasting with strong short-term 

performance [11]. Katimon et al. (2017) developed 

stochastic models to predict Johor river water quality and 

hydrological variables in Malaysia. They found that the 

models are beneficial for addressing rapid land use changes 

and can help investigate the relationship between water 

quality and rainfall-runoff processes [12]. Kassem et al. 

(2020) predicted the daily streamflow of Khazir River Basin 

by using SARIMA and ANN models, finding that both the 

SARIMA and ANN-MLP models demonstrated similar 

level of performance, with ANN-MLP showing slightly 

better accuracy [13]. Adams and Bamanga (2020) proposed 

a SARIMA model to predict monthly rainfall in Abuja, 

Nigeria from 1996 to 2018. The model was used to forecast 

rainfall for the next four years, indicating a 3.5% increase in 

rainfall from 2018 to 2019, 4.9% from 2018 to 2020, 4.7% 

from 2018 to 2021, and 5.2% from 2018 to 2022 [14]. Liu 

et al. (2023) investigated the hydrological data of a 

hydropothe paperr station in Xiaolangdi Reservoir over the 

past six years. The SARIMA model and CUSUM algorithm 

were used to analyze the multi-scale hydrological 

characteristics of the station. Results show that the 

seasonality, periodicity, and mutation of water and sand flux 

in the area reveal a strong correlation between rainfall and 

seasonal changes [15]. Ning and Musa (2023) used time 

series models, ARIMA, ARMA, and SARIMA to forecast 

two stations, Temerloh and Lubok Paku, of Pahang River. 

SARIMA is chosen as the best model, generating high 

accuracy with a MAPE of 18.35% for Temerloh and 6.54% 

for Lubok Paku, and improved forecasting precision due to 

seasonality [16]. Sheikholeslami et al. (2024) modeled the 

Karaj Dam reservoir in Tehran's water supply system by 

using Historical data from April 2006 to March 2022 to 

predict the reservoir's share in Tehran's water supply for 

April 2023 to March 2023. The SARIMA model was chosen 

for Tehran's water consumption and inflow prediction. The 

model results showed a decrease in reservoir volume, 

affecting household water supply and agricultural usage 

[10].  

The objective of this research is to utilize SARIMA 

modeling on historical flow data of the Chalous River. The 

purpose is to assess the model's effectiveness in predicting 

future flow rates and to provide valuable insights for water 

management decisions in the region. The implementation of 

SARIMA predictions enables local authorities to improve 

their capacity to forecast and alleviate the consequences of 

seasonal fluctuations and extreme weather events on river 

discharge in Mazandaran province, thereby supporting the 

sustainable management of water resources. 

 

Figure 1. Path of the Chalus River by Google Earth 

2. Materials and Methods 

2.1. Study Area 

The Chalus River plays a crucial role as a surface water 

source in the western region of Mazandaran Province, Iran. 

The river's flow rate is continuously monitored by seven 

measurement stations, which are essential for managing 

water resources effectively in the area. These monitoring 

stations are essential for comprehending the river's patterns 

throughout various seasons, which is vital for managing 

Chalus River 
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floods, planning irrigation, and securing a consistent water 

source for nearby regions [17]. Table 1 provides an 

overview of the monitoring stations situated on Chalus 

River, as shown in Figure 1. 

Table 1. The overview of the monitoring stations 

Area Of Watershed 

(Km2) 

The Length Of The Main Branch Of The River 

(Km) 

Geographic 

Coordinates Monitoring 

Stations 
Number 

X Y 

59.306 9.1 529653 4007103 Pol Margan 1 

84.839 14.6 528388 4009745 Darre Harijan 2 

181.099 19.6 527207 4009893 Vali Absd 3 

302.191 24.3 520707 4018385 Vaspoul 4 

586.186 27.6 522969 4020628 Abshar 5 

627.434 42.9 530264 4038907 Do Ab 6 

1583.362 50.1 529799 4040624 Pol Zoghal 7 

The main station on Chalus River, Pol Zoghal, has been 

chosen to analyze the monthly data spanning from 2006 to 

2023 in order to forecast the river's flow rate for the entire 

year of 2024 through SARIMA modeling conducted on 

Minitab software. 

2.2. SARIMA Model 

The flowchart illustrating the procedure for time series 

modeling can be found in Figure 2. The primary stages of 

time series modeling involve identifying the model, 

estimating parameters, conducting diagnostic checks, and 

making forecasts. 

Box-Jenkins made a notable impact on time series 

forecasting by introducing a general approach and 

emphasizing the importance of data stationarity as a primary 

condition for effective time series modeling. If the data is 

non-stationary, steps should be taken to achieve stationarity 

before modeling [18]. Stationary time series exhibit 

constant mean and variance values, which is investigated by 

Augmented Dicky Fuller Test (ADF), which assesses 

stationarity by detecting the presence or absence of a unit 

root. If a time series is non-stationary and demonstrates a 

trend, it can be made stationary by identifying and 

eliminating instability factors directly, as well as utilizing 

transformation and differentiation functions [19].  

Besides being stationary, the series must also exhibit a 

Normal distribution. The normality of a time series can be 

examined using statistical methods such as Kolmogorov-

Smirnov, Anderson-Darling, and Shapiro-Wilk tests. In this 

study, the Anderson-Darling method was employed to 

evaluate the normal distribution of the Chalus River time 

series data. In this assessment, a P-Value lower than 0.05 

leads to the dismissal of the null hypothesis regarding the 

normality of the data, indicating the non-normality of the 

time series data, therefore, it is crucial to normalize the time 

series prior to modeling through the application of 

transformation functions [10].  

Alongside evaluating the normality of the data, it is vital to 

examine trend and homogeneity of time series in the 

discussion of data stationarity. The Mann–Kendall trend 

test, a nonparametric technique based on ranks, is 

commonly utilized to identify trends in Hydrological time 

series due to its resilience to outliers [20], as demonstrated 

by Jin et al (2018) where Mann–Kendall trend analysis is a 

widely accepted approach for studying Hydrological 

variability [21]. The null hypothesis (H0) of the Mann–

Kendall test ) states that there is no trend in time series and 

the p-value higher than the significance level alpha=0.05, 

cannot reject the null hypothesis [22]. The purpose of 

homogeneity tests is to ascertain whether the variations are 

linked to a change in the average. The commonly used 

methods for assessing homogeneity include the Standard 

normal homogeneity test, Pettitt test, Buishand range test, 

and Von Neumann ratio test, which in this study the Pettitt 

test is employed to assess homogeneity for recognizing the 

change point [23]. The null hypothesis (H0) of Pettitt test 

asserts the data are homogenous, which rejected by the p-

value lower than 0.05 [10]. 

Following the standardization of the data, the model order 

and parameters were estimated by analyzing the 

autocorrelation function (ACF) and partial autocorrelation 

function (PACF) charts. The ACF and partial PACF plots 

were employed as valuable instruments to verify 

stationarity, recognize the SARIMA model structures, and 

determine the order of p, P, q, and Q. By trying out various 

orders of repetitive processes, the model with the lowest 

Akaike Information Criterion (AIC) value was identified as 

the most appropriate model. Subsequently, the accuracy of 

the model was assessed through the Anderson Darling test 

for normality of residuals, Chi-Square test for data 

independence, and the Run Test for data randomness. 

Finally to evaluate the accuracy of the results obtained from 

the models, the relationships in Table 2 have been used. 

3. Results 

The prediction of the Chalous River's flow rates was 

achieved through the application of the SARIMA model, 

which took into consideration seasonal features in the time 

series data within MiniTab software. The analysis and 

forecasting of time series data on Chalous River flow rates 

provide essential insights for urban planners and 

researchers, enabling them to estimate future consumption 
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values and identify main parameters such as trends, seasonal 

effects, and jumps through the application of models. 

Initially, the stationary and normality of the Chalus River 

time series data were assessed using Augmented Dickey-

Fuller and Anderson-Darling normality tests with the results 

outlined in Table 3. In the Augmented Dickey-Fuller test, if 

the p-value is below 0.05, the null hypothesis of non-

stationarity in the time series is rejected, hence it is evident 

from the test findings and the p-value of 0.0001 that the 

Chalus River time series demonstrates stationarity. Since 

the p-value from the Anderson-Darling test on the Chalus 

River time series is below 0.05, it indicates that the data 

does not adhere to a normal distribution. Therefore, in 

accordance with the normality principle, it is essential to 

normalize the time series when analyzing and forecasting 

time series data. Table 4 displayed the transformation 

functions that were considered for normalizing the time 

series 

Flow Rate Data Collection Data stationary test Data Normality test

Data homogeneity and Trend Test Data standardizationACF and PACF plots

Estimation of model parameters Model accuracy control Prediction

 

Figure 2. Flowchart of Time Series Modeling 

Table 2. The model precision criteria 

Nash Sutcliffe model efficiency coefficient Error Coefficient of determination 

𝐍𝐒 = 𝟏 −
∑ (𝐗𝐦𝐢 − 𝐗𝐩𝐢)

𝟐𝐧
𝟏

∑ (𝐗𝐩𝐢 − �̅�𝐩)𝟐𝐧
𝟏

 %𝐄 =
∑ 𝐗𝐦𝐢 − 𝐗𝐩𝐢

𝐧
𝟏

∑ 𝐗𝐦𝐢
𝐧
𝟏

 𝐑𝟐 =
(∑ 𝐗𝐩𝐢𝐗𝐦𝐢)

𝐧
𝟏

𝟐

∑ 𝐗𝐩𝐢
𝟐    ∑ 𝐗𝐦𝐢

𝟐𝐧
𝟏

𝐧
𝟏

 

X̅p= the average of the observed values 

N = the number of data. 

Xp =estimated values of the model 
Xm =observed values, 

Table 3. P-values of statistical tests of Chalous River's flow rate time series 

Pettitt's Test Mann-Kendall Tests Augmented Dickey-Fuller Test Anderson-Darling Normality test 

0.2 0.81 0.0001 0.0005 

 

Table 4. Transformation identification Chalous River's flow 

rate 

Distribution P-values 

Normal <0.005 

Box-Cox Transformation <0.005 

Lognormal <0.005 

Exponential <0.003 

2-Parameter Exponential <0.010 

Weibull <0.010 

3-Parameter Weibull <0.005 

Smallest Extreme Value <0.010 

Largest Extreme Value <0.010 

Gamma <0.005 

Logistic <0.005 

Loglogistic <0.005 

Johnson Transformation 0.182 

Out of the various transformation identification functions, 

the Johnson Transformation function was selected as the 

most suitable method for normalizing the data, as the p-

value from the Anderson-Darling test exceeded 0.05, in 

accordance with Equation 1. 

Johnson transformation function =  −1.06618 +

 (0.81533 ×  LN( X −  4.0623 ))  
(1) 

where X is Chalous River's flow rates. 

Following the Johnson Transformation, it is evident from 

the outcomes that the p-value of 0.182 exceeds 0.05, leading 

to the rejection of the null hypothesis in the Anderson-

Darling test, indicating conformity of the transformed data 

to the normal distribution. 

Besides normalizing the data, the homogeneity and trend 

of the time series data of Chalus River were investigated 

using Pettit and Mann-Kendall tests. The null hypothesis in 

Pettitt's test indicated that the p-value of 0.2 supported the 

homogeneity of Chalus River data. Moreover, in accordance 

with the Mann-Kendall test result, the p-value of 0.81 

exceeding 0.05 supports the null hypothesis, demonstrating 

the lack of a trend in the time series. 

Standardizing the time series of Chalus River is the initial 

step in preparing the data for modeling, followed by fitting 

the suitable model to the standardized series. The values for 

SARIMA (p, d, q)(P, D, Q) were determined through the 

analysis of ACF and PAC) plots. The value of component d 

in the Chalus River time series is zero because considering 

to the Mann-Kendall test result, there is no trend observed. 
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Conversely, as shown in Figure 3-a, the appearance of a 

repeating sine wave in the ACF plot indicates that the time 

series being analyzed exhibits a seasonal pattern with a 

cycle of 12. The seasonal component was eradicated 

through the use of first-order seasonal differentiation, and 

subsequently, the repeating sine wave in the ACF diagram 

was removed as shown in Figure 4-a, resulting in a value of 

D being one.

  
(a) (b) 

Figure 3. a) ACF and b) PACF for observed data of Chalus River Flow Rate 

  
(a) (b) 

Figure 4. a) ACF, and b) PACF for first order seasonal differencing and de-seasonal observed data of Chalus River Flow Rate

Therefore, SARIMA (p, 0, q) (P, 1, Q)12 models were 

considered. The values of the parameters p, q, P, and Q was 

specified  by the characteristics identified in the de-

seasonalized ACF and PACF plots (as shown in Figure 4). 

The ACF plot of the time series in Figure 4-a that has been 

adjusted for seasonal variations demonstrates a gradual 

decrease in correlation values, with notable spikes observed 

at lag positions 1 through 5, while the spikes in ACF plot 

placed in confidence interval beyond the 5th lag, hence the 

order for the moving average parameter (MA) (non-

seasonal component) was put forward as q=0-5. 

Furthermore, Figure 4-a illustrates a significant downward 

spike at the 12th lag on the ACF plot, surpassing the 

confidence interval at that lag, and following the 24th lag, 

the ACF spikes decreased and fell within the ACF 

confidence interval, leading to a suggested order of Q=1 for 

seasonal moving average (SMA) values. 

Similarly, in the non-seasonal factor, the PACF plot of the 

de-seasonal observed data of Chalus River flow rate as 

illustrated in Figure 4-b displays notable peaks at the first 

and second lags, with the confidence interval of the PACF 

plot being cutts off, and then the spikes are in range of 

confidence interval after lag 2nd, consequently, the 

recommended value for the autoregressive (AR) parameter 

is p=0-2. Moreover, Figure 4-b displays notable peaks at the 

12th, 24th and 36th lags on the PACF plot, positioned outside 

the confidence interval lines, leading to the suggestion of 

P=0-3 for the seasonal autoregressive (SAR) parameters. 

Subsequently, SARIMA models were considered for 

additional assessment according to the specified criteria 

outlined in Table 5, which mong them, 

SARIMA(2,0,0)(0,1,1)12 determined to be the most optimal 

model owing to its lowest AIC value. 

Upon the selection of the appropriate model, it becomes 

essential to examine the residuals of the model to ensure its 

accuracy. Consequently, the modified Ljung-Box test was 

utilized to assess the model's adequacy and the randomness 

of the residuals. The modified Ljung-Box test outcomes in 

Table 6 demonstrate that the residuals are independent, 

given that the p-value exceeds 0.05 for all delays, 

furthermore the absence of significant autocorrelation in all 

residual values is evident from the ACF and PACF plots 

shown in Figure 5. 

The Anderson Darling test, the normal probability 

diagram, and the histogram of the residuals were employed 

to assess the normality of the residuals. With a p-value of 

0.4 from the Anderson Darling test, it can be inferred that 
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the residuals exhibit normality; moreover, the visual 

representations in Figures 6-a and 6-c further confirm this 

normality. Additionally, Figure 6-b points to a consistent 

variance in the residuals. The plot in Figure 6-b displays the 

relationship between residuals and fitted values, supporting 

the assumption that the residuals exhibit consistent 

variance. The data points in Figure 6-c are distributed 

randomly around zero without any clear trends, indicating 

consistent residual variance. Also, the Run Test's validation 

indicates the randomness of the residuals, as the p-value is 

above 0.05. 

The SARIMA(2,0,0)(0,1,1)12 model's accuracy was 

validated through an examination that included the squared 

criteria of the correlation coefficient, error percentage, and 

Nash Sutcliffe efficiency coefficient, detailed in Table 7. 

The results presented in Table 7 demonstrates that the 

SARIMA model for Chalus River Flow Rate exhibits 

satisfactory accuracy. 

The graph depicted in Figure 7 illustrates the monthly 

Chalus River Flow Rate through historical and prediction 

data based on a SARIMA (2, 0, 0) (0, 1, 1)12 model. 

Moreover, the out-of-sample predict graph exhibits a similar 

trend to the validation and historical graphs, but it falls short 

in predicting exceptionally high flows. In general the chosen 

model is suitable for predicting Chalus River flow rate for 

future conditions. The order of p being 2 in the SARIMA (2, 

0, 0) (0, 1, 1)12 model implies that the Chalus River flow 

rate time series (yt) is connected to its earlier data points yt–

1, and yt–2, With an order Q of 1, yt is influenced by the 

preceding random shocks of εt–12. Since the non-seasonal 

part of the model was already stationary, there was no need 

to apply non-seasonal differencing (d =0), nevertheless, 

seasonal differencing was employed just once to eliminate 

seasonal patterns in the model.

Table 5. Optional SARIMA models for Chalus River Flow Rate 

Model (d = 0, D = 1) AIC Model (d = 0, D = 1) AIC Model (d = 0, D = 1) AIC 

p = 2, q = 0, P = 0, Q = 1* 220.87 p = 2, q = 4, P = 2, Q = 1 296.89 p = 1, q = 4, P = 1, Q = 1 324.36 

p = 2, q = 1, P = 0, Q = 1 222.86 p = 2, q = 3, P = 2, Q = 1 300.99 p = 2, q = 4, P = 1, Q = 1 328.74 

p = 2, q = 0, P = 1, Q = 1 225.69 p = 2, q = 4, P = 0, Q = 1 301.24 p = 0, q = 5, P = 2, Q = 1 337.26 

p = 1, q = 0, P = 0, Q = 1 232.63 p = 0, q = 4, P = 2, Q = 1 303.04 p = 0, q = 2, P = 2, Q = 1 347.22 

p = 1, q = 0, P = 1, Q = 1 236.08 p = 1, q = 3, P = 0, Q = 1 306.08 p = 1, q = 5, P = 0, Q = 1 359.12 

p = 2, q = 2, P = 1, Q = 1 235.9 p = 2, q = 0, P = 3, Q = 1 306.91 p = 1, q = 1, P = 2, Q = 1 359.64 

p = 2, q = 1, P = 1, Q = 1 236.84 p = 1, q = 2, P = 0, Q = 1 307.56 p = 2, q = 5, P = 0, Q = 1 363.3 

p = 1, q = 0, P = 2, Q = 1 261.57 p = 1, q = 1, P = 1, Q = 1 311.49 p = 1, q = 5, P = 1, Q = 1 368.88 

p = 2, q = 2, P = 0, Q = 1 271.19 p = 1, q = 4, P = 0, Q = 1 312.32 p = 0, q = 3, P = 2, Q = 1 370.62 

p = 1, q = 1, P = 0, Q = 1 282.01 p = 2, q = 4, P = 3, Q = 1 313.3 p = 0, q = 4, P = 3, Q = 1 371.58 

p = 2, q = 1, P = 2, Q = 1 281.81 p = 2, q = 3, P = 1, Q = 1 317.45 p = 1, q = 2, P = 2, Q = 1 386.35 

p = 2, q = 3, P = 3, Q = 1 290.01 p = 1, q = 2, P = 1, Q = 1 319.69 p = 0, q = 1, P = 3, Q = 1 387.45 

p = 2, q = 1, P = 3, Q = 1 291.58 p = 2, q = 3, P = 0, Q = 1 320.43 p = 2, q = 5, P = 1, Q = 1 387.56 

p = 1, q = 0, P = 3, Q = 1 293.09 p = 1, q = 3, P = 1, Q = 1 321.3 p = 1, q = 2, P = 3, Q = 1 388.76 

Table 6. The results of Modified Box-Pierce (Ljung-Box) Chi-Square Statistic 

Lag 12 24 36 48 

Chi-Square 5.51 16.85 29.35 31.42 

DF 9 21 33 45 

P-Value 0.788 0.720 0.649 0.938 

 

  
(a) (b) 

Figure 5. a) ACF, and b) PACF of residuals for Chalus River Flow Rate model 
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Figure 6. a)Normal probability plot, b) Histogram plot, c) Residuals versus fitted value plot, d) RUN-test plot of residuals of 

Chalus River Flow Rate model 

Table 7. Precision criteria for Chalus River Flow Rate model 

R2 E% NS 

0.91 2.68 0.77 

 

Figure 7. Observed and predicted Flow Rate of Chalus River 

4. Conclusions 

The primary aim of this research is to predict the Chalus 

River's water flow in Mazandaran Province, Iran, by 

employing SARIMA model with monthly data spanning 

from 2006 to 2023. Data analysis was carried out at the Pol 

Zoghal station to make predictions regarding flow rates in 

the year 2024. The study makes a valuable contribution to 

the continuous exploration of SARIMA model applications 

in hydrological forecasting, particularly in regions with 

substantial seasonal variations. It showcases how SARIMA 

effectively captures both seasonal and non-seasonal aspects 

of time series data. To implement the SARIMA model, it is 

essential to evaluate data stationarity using the Augmented 

Dickey-Fuller (ADF) test, transform the data through the 

Johnson Transformation, and deduce SARIMA parameters 
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(p, d, q)(P, D, Q)s based on Autocorrelation Function (ACF) 

and Partial Autocorrelation Function (PACF) plots. MiniTab 

software was utilized in the study for SARIMA modeling, 

alongside the application of various statistical tests for data 

analysis and validation. The most suitable model for 

forecasting the monthly flow rates of the Chalus River was 

found to be SARIMA (2,0,0)(0,1,1)12, showing exceptional 

precision. The model is well-suited for forecasting future 

flow rates, even if it may not completely capture extreme 

values. 
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