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 Abstract: 

In recent years, renewable energy sources have gained significant attention. Optimizing small-

scale renewable energy systems plays a crucial role in effectively and economically using these 

resources. Particle Swarm Optimization (PSO) is a popular stochastic optimization method 

widely applied in various fields. However, standard PSO techniques face challenges, including 

high computational complexity and rapid convergence rates. This study presents a modified PSO, 

Comprehensive Learning Particle Swarm Optimization (CLPSO), and Generalized PSO 

(GEPSO) techniques to optimize the capacity sizing of hybrid power generation systems. These 

systems include photovoltaic (PV), wind, and battery units to supply power to an Information and 

Communication Technology (ICT) center. The research evaluates two scenarios: a standalone 

system with PV, wind, and battery units and a grid-connected system with PV and wind units. 

Results demonstrate that the CLPSO technique significantly reduces overall investment costs 

compared to standard PSO, MPSO, and GEPSO algorithms by 53.34% and 27.28% for 

standalone and grid-connected systems, respectively. Furthermore, CLPSO reduces computation 

time by 57.9% in grid-connected systems and improves energy procurement efficiency, 

decreasing the required energy purchased from the grid by up to 11.84%. Ultimately, CLPSO 

outperforms other PSO techniques in terms of both precision and efficiency, making it the most 

suitable method for solving optimization problems in renewable microgrid design. 
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1. Introduction 

The rapid growth in global energy demand, combined with 

increasing concerns over environmental sustainability and 

the depletion of fossil fuels, has shifted the focus toward the 

use of renewable energy sources. Electricity, now essential 

to daily life, powers homes, industries, and commercial 

facilities. As traditional power grids expand to meet these 

growing needs, alternative systems like microgrids have 

emerged as crucial solutions. A microgrid is a small-scale, 

localized power system that balances its supply and demand 

using distributed generation (DG) units and energy storage 

systems (ESS). These systems can operate autonomously or 

alongside the central grid, ensuring reliable energy supply 

even during grid failures. This adaptability and resilience 

have led to a significant rise in the development of 

microgrids, driven primarily by the demand for higher 

reliability, advancements in renewable energy technologies, 

and concerns about the environmental impacts of fossil 

fuels [1, 2]. 

Microgrids, often incorporating renewable energy sources 

such as photovoltaic and wind turbines,  effectively enhance 

grid stability and promote sustainable energy use. Wind and 

solar energy are attractive because of their accessibility and 

decreasing costs due to advancements in technology. 

However, the variability of renewable energy, caused by 

factors like wind speed fluctuations and changes in solar 

radiation, presents a critical challenge for microgrid 

operators. The balance between energy production and 

consumption in a microgrid can be difficult to maintain, 

particularly when these fluctuating renewable sources 

dominate the energy mix. A common solution is to integrate 

the microgrid with the central power grid, allowing it to 

draw on the main grid during periods of low production and 

export surplus energy when production exceeds local 

demand. When grid connection is not feasible or desired, 

energy storage systems, typically composed of batteries, 

become essential for stabilizing the grid and improving 

system efficiency by storing excess energy for later use [3-

5]. 

Given the increasing reliance on renewable energy in 

microgrids, the optimization of these systems has become a 

focal point of research. Optimizing the design of a 
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microgrid involves determining the best combination of DG 

units and energy storage systems to meet the local demand 

while minimizing both capital and operational costs. These 

costs encompass the investment in renewable generation 

units (such as wind turbines and PV panels) and energy 

storage systems, as well as the ongoing operational costs 

related to energy management and grid maintenance. With 

the increasing complexity of microgrid configurations, 

traditional mathematical optimization methods have proven 

insufficient due to their inability to manage the nonlinear 

and large-scale nature of the optimization problem. 

Therefore, heuristic approaches such as Particle Swarm 

Optimization (PSO) have been widely adopted as more 

efficient solutions [6]. 

PSO, a popular metaheuristic optimization method, 

simulates the social behavior of particles moving through a 

solution space in search of an optimal solution. While PSO 

has been applied to various problems, including microgrid 

design, it faces challenges such as premature convergence, 

high computational costs, and limited performance in large 

or complex scenarios. To address these shortcomings, 

several variants of PSO, such as Modified PSO (MPSO), 

Comprehensive Learning PSO (CLPSO), and Generalized 

PSO (GEPSO), have been proposed. Despite these 

advancements, a clear gap remains in the literature 

concerning their application to the specific challenges posed 

by microgrid design, particularly in hybrid renewable 

systems combining wind, solar, and battery storage [7-9]. 

One of the primary challenges in microgrid design is 

balancing the fluctuating energy supply from renewable 

sources with the demands of the grid. Singh et al. [10] 

addressed the critical role of ESS in stabilizing microgrids, 

particularly those incorporating wind and solar power. 

According to Singh’s work, ESS is vital in mitigating the 

inherent variability of these energy sources, allowing for a 

more consistent power supply. In addition to stabilizing the 

grid, ESS also contributes to overall system efficiency by 

storing excess energy during periods of high generation and 

discharging it during periods of low renewable generation 

or high demand. 

Parhizi et al. [11] and Obarra [12] explored the potential of 

microgrids to reduce dependence on traditional power grids, 

particularly in remote or isolated areas where the extension 

of central grid infrastructure is impractical or cost-

prohibitive. These studies highlighted the potential of 

microgrids to enhance energy reliability and resilience, 

particularly in areas prone to natural disasters or where the 

threat of grid disruptions due to geopolitical factors is high. 

Wang investigated various optimization models for 

microgrids, focusing on the integration of distributed 

generation units and energy storage systems. The study 

developed an optimization framework that sought to 

minimize both capital and operational costs while 

maximizing the reliability and efficiency of the microgrid 

[13]. 

The use of heuristic optimization techniques, particularly 

PSO, has gained prominence in recent years as an 

alternative to more traditional methods. PSO, a population-

based optimization algorithm inspired by the social 

behavior of birds and fish, has been applied to various 

problems in power system optimization. Studies by Obarra 

[12] and Sheng et al. [14] demonstrated the effectiveness of 

PSO in solving nonlinear and high-dimensional 

optimization problems, particularly those involving 

renewable energy integration in microgrids. However, these 

studies also noted limitations in the standard PSO algorithm, 

including its tendency to converge prematurely and high 

computational complexity. 

To address these limitations, several modified versions of 

PSO have been proposed. One such variant, the MPSO, was 

explored by Cao et al. [15] in the context of microgrid 

design. The study found that MPSO offered improved 

convergence speed and solution accuracy compared to the 

standard PSO algorithm, particularly in scenarios involving 

complex microgrid configurations. Another advanced PSO 

variant, CLPSO, was introduced by Obarra [12] as a 

solution to the premature convergence problem. CLPSO 

encourages particles to learn from the best solutions in the 

entire population rather than being restricted to their local 

neighbourhoods, which improves global search capability 

and reduces the risk of being trapped in local optima. 

More recently, the GEPSO algorithm has been developed 

to refine the original PSO technique further. GEPSO 

incorporates elements of genetic algorithms, such as 

mutation and crossover, to enhance its exploratory 

capabilities. Although GEPSO has shown promise in other 

optimization fields, its application to microgrid design 

remains relatively unexplored. The study by Cao et al. [15] 

highlighted the potential of GEPSO in optimizing microgrid 

configurations but called for more research to compare its 

performance with other PSO variants in the specific context 

of renewable energy microgrids. 

Finally, the environmental benefits of renewable energy 

microgrids have also attracted considerable attention in the 

literature. The work of Zia et al. [16] and Hatzisargyriou 

[17] emphasized the potential for microgrids to reduce 

greenhouse gas emissions by replacing fossil-fuel-based 

power generation with renewable sources. These studies 

showed that by optimizing the configuration of wind, solar, 

and storage systems, microgrids could significantly reduce 

carbon emissions while maintaining a reliable energy 

supply. However, there remains a lack of comprehensive 

studies that compare the environmental performance of 

different microgrid configurations and optimization 

techniques. 

The primary gap in existing research lies in the 

comparative analysis of different PSO variants in the 

context of hybrid microgrid optimization. Most studies have 

applied standard PSO or similar heuristic algorithms 

without exploring the full potential of advanced PSO 

techniques, particularly in handling the nonlinear, large-

scale optimization problems typical of microgrid design. 

Furthermore, few studies have considered the broader range 

of renewable energy sources (i.e., both wind and solar) 

alongside energy storage systems in standalone and grid-

connected configurations. As a result, the specific benefits 

of using CLPSO and GEPSO for optimizing microgrid 
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design, especially in terms of minimizing investment costs, 

operational costs, and computation time, remain 

underexplored. 

This study aims to address these gaps by applying 

advanced PSO techniques—specifically, CLPSO, MPSO, 

and GEPSO—to optimize the design of a hybrid renewable 

energy microgrid. The optimization process involves 

selecting the most efficient combination of wind turbines, 

PV panels, and energy storage systems to meet the energy 

demands of an ICT (Information and Communication 

Technology) center while minimizing both capital and 

operational costs. A key objective of this research is to 

determine the most effective configuration of renewable 

energy units and storage systems under two distinct 

scenarios: one in which the microgrid operates 

independently from the central grid and another in which it 

is connected to the grid. By comparing the performance of 

CLPSO, MPSO, and GEPSO across these scenarios, this 

study seeks to identify the most efficient method for hybrid 

microgrid optimization. 

The novelty of this research lies in its application of 

CLPSO and GEPSO to the problem of hybrid microgrid 

design. While these techniques have been applied to other 

optimization problems in power systems, this is the first 

study to use them for optimizing the capacity and 

configuration of hybrid renewable energy microgrids. 

CLPSO has shown promise in other areas of power system 

optimization but has not yet been applied to microgrids. 

This research also compares CLPSO, MPSO, and GEPSO, 

providing insights into their relative performance in terms 

of cost reduction, computational efficiency, and solution 

accuracy. Another novel aspect of this study is its focus on 

both standalone and grid-connected microgrid 

configurations, enabling a broader understanding of how 

different optimization techniques perform under varying 

operational conditions. 

In addition to optimizing microgrid performance, this 

study examines the environmental benefits of integrating 

renewable energy into microgrids. By reducing the reliance 

on fossil-fuel-based power generation, renewable energy 

microgrids can significantly lower carbon emissions and 

contribute to global sustainability goals. This research 

evaluates the impact of different microgrid configurations 

on both energy costs and environmental performance, 

highlighting the potential for renewable energy to play a key 

role in future power systems. 

Ultimately, this research aims to demonstrate that CLPSO 

is a more efficient optimization technique than traditional 

PSO, MPSO, and GEPSO for hybrid microgrid design. 

Through detailed simulations and a comprehensive 

comparison of these methods, this study contributes to the 

growing body of knowledge on renewable energy 

microgrids and offers practical insights for optimizing their 

design and operation. The results are expected to have 

implications not only for the academic community but also 

for policymakers and engineers seeking to design cost-

effective and environmentally sustainable energy systems. 

2. Methodology 

This study focuses on the integration of renewable energy 

sources like wind and PV systems with energy storage 

(battery) systems. The primary objective is to minimize the 

total investment and operational costs while ensuring that 

energy demand is reliably met through the hybrid system. 

PSO, including its variants such as CLPSO, MPSO, and 

GEPSO, is employed to solve this optimization problem. 

An optimal renewable microgrid design has been proposed 

for powering the Information and Communication 

Technology Center at Mansoura University in Egypt [18]. 

This design incorporates wind turbines and PV units as 

renewable energy sources, coupled with batteries for energy 

storage. To ensure accurate modeling, the design also 

considers the costs associated with power inverters 

connecting the wind and PV units to the microgrid, as well 

as PV controllers. 

The microgrid operates in two distinct modes: grid-

connected and off-grid. In the off-grid mode, the battery 

storage system becomes active, storing excess energy 

during periods of surplus and supplying energy during 

periods of deficit. Conversely, in the grid-connected mode, 

the battery is inactive, allowing the microgrid to sell excess 

energy to the main grid or purchase energy when needed. 

A schematic representation of the proposed microgrid 

system is shown in Figure 1. 

 

Figure 1. Schematic of the proposed microgrid design

2.1. Objective Function 
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The primary goal of this study is to minimize the total cost 

of the hybrid renewable energy system over its lifetime. The 

total cost includes the initial capital investment, operational 

and maintenance costs, and, in the case of grid-connected 

systems, the cost of purchasing energy from the grid. The 

objective function can be formulated as: 

Minimize TC = ∑(𝐶inv + 𝐶oper + 𝐶maint + Cgrid −

Csell)  
(1) 

where TC is the total system cost, Cinv represents the capital 

investment cost for wind turbines, PV panels, and battery 

systems, Coper is the operational cost of the system, which 

includes fuel costs for backup power generation if required, 

Cmaint refers to maintenance costs for the system 

components, Cgrid denotes the cost of energy purchased from 

the grid (applicable in grid-connected scenarios), and Csell 

represents revenue generated from selling excess energy to 

the grid. 

2.2. Constraints 

Various operational and physical constraints must be 

incorporated into the model to ensure that the solution is 

feasible. The first constraint ensures that the total energy 

generated meets or exceeds the energy demand: 

∑(EPVNPV + EWTNWT + Egrid) ≥ Eload  (2) 

where EPVE is the energy output from PV panels and wind 

turbines, NPVN is the number of PV panels and wind 

turbines, Egrid represents the energy purchased from the grid, 

and Eload is the annual energy demand. 

Other constraints include limitations on the capacity of 

inverters and controllers, as well as restrictions on the 

battery depth of discharge to ensure efficient storage 

operation. 

2.3. Modeling Components of the Microgrid 

The components of the hybrid renewable energy system 

are modeled mathematically to simulate their performance. 

These components include wind turbines, photovoltaic 

panels, battery storage systems, inverters, and controllers. 

2.3.1. Wind Turbine Model 

The output power of a wind turbine is a function of wind 

speed, which can be modeled using a Weibull distribution 

for wind speed data at the turbine's hub height. The 

probability density function (PDF) for the Weibull 

distribution is [19]: 

𝑓(𝑥) =
𝛽


. (

𝑥


)

𝛽−1

. 𝑒
−(

𝑥


)𝛽

  (3) 

where v is the wind speed, η is the scale parameter, β is the 

shape parameter. The total energy output from the wind 

turbine over a specific period can be calculated as: 

𝐸𝑊𝑇 = 𝑇ℎ𝑟 . ∑ 𝑃𝑐
𝑣𝑚𝑎𝑥
𝑣𝑚𝑖𝑛

𝑓(𝑣, 𝛽, 𝜂)  (4) 

where Thr is the total operational hours, and Pc is the power 

output from the turbine at a given wind speed. 

2.3.2. PV Panel Model 

The power output of a photovoltaic panel depends on solar 

irradiance and panel temperature. The output is modeled 

using the following equations [20]: 

𝑃𝑃𝑉 = 𝑉. 𝐼(𝑉)  (5) 

𝐼(𝑉) =
𝐼𝑥

1−𝑒
(

1
𝑏)

. [1 − 𝑒𝐴]  (6) 

𝐴 = (
𝑉

𝑏.𝑉𝑥
−

1

𝑏
)  (7) 

where PPV is the power output of the PV panel, V is the 

output voltage, I(V) is the current at a specific voltage, and 

Ix is the function of solar irradiance and temperature. The 

total energy produced by the PV array over a year is given 

by: 

𝐸𝑃𝑉 = 𝑃(𝑆𝑅𝑥). (𝑆𝑊). (365)  (8) 

where SW is the total sunlight hours, and SRx is the average 

solar irradiance. 

2.3.3. Battery Storage Model 

The battery system is modeled to ensure a reliable energy 

supply during periods of low renewable generation. The 

total capacity required for the battery system can be 

calculated using [21]: 

𝐵𝑅 =
𝐿𝐴ℎ 𝐷𝑎𝑦⁄ .𝑁𝐶

𝑀𝐷𝐷.𝐷𝐹
  (9) 

where BR is the required battery capacity, LAh/Day is the daily 

energy demand in ampere-hours, NC is the number of 

autonomous days, MDD is the maximum depth of discharge, 

and DF is the discharge factor. 

2.4. Optimization Algorithm: PSO Variants 

To optimize the microgrid system, the study uses PSO and 

its advanced variants CLPSO, MPSO, and GEPSO. 

2.4.1. PSO Algorithm 

PSO is a population-based optimization algorithm where 

particles (solutions) explore the search space by adjusting 

their positions and velocities. The velocity of each particle 

is updated based on its previous velocity, its best-known 

position (pbest), and the global best-known position (gbest) of 

the swarm. 

The velocity update formula is [22]: 

vi(t + 1) = wvi(t) + c1r1(pi(t) − xi(t)) + c2r2

(g(t) − xi(t))  
(10) 

where w is the inertia weight, c1 and c2 are cognitive and 

social acceleration constants, and r1 and r2 are random 

numbers between 0 and 1. 

Particles update their positions as follows: 

xi(t + 1) = xi(t) + vi(t + 1)  (11) 
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The iterations continue until convergence is achieved or a 

predefined termination criterion is met. 

2.4.2. GEPSO Variant 

GEPSO further improves the standard PSO by introducing 

dynamic inertia weights and incorporating random 

velocities to increase diversity. This approach enhances the 

algorithm's ability to escape local optima and converge on a 

global solution [8]. 

2.5. Economic and Environmental Analysis 

The economic analysis is conducted using a Net Present 

Value (NPV) approach to assess the profitability of the 

microgrid investment. The environmental analysis 

evaluates the reduction in greenhouse gas (GHG) emissions 

by comparing the proposed renewable energy microgrid to 

conventional fossil-fuel-based energy systems. 

The NPV is calculated as [23]: 

𝑁𝑃𝑉 =  ∑
𝐶𝑐𝑎𝑠ℎ

(𝑖+1)𝑦

𝑛

𝑦=1
  (12) 

where Ccash is the net cash flow for each year, i is the 

discount rate, and n is the number of years in the project’s 

lifetime. 

The environmental analysis focuses on the reduction of 

CO2 emissions by replacing fossil-fuel-generated electricity 

with renewable energy sources. This reduction is calculated 

based on the difference in emissions between the grid and 

the renewable system. 

2.6. Simulation Setup 

Simulations were performed using MATLAB. The test 

microgrid consisted of wind turbines, PV arrays, and battery 

storage, with data for wind speed, solar irradiance, and 

demand based on actual measurements from a case study 

site. Simulations were run for both grid-connected and off-

grid scenarios, with different optimization techniques 

applied to each scenario. 

The PSO-based approach is applied using real data to 

identify the optimal configuration and sizing of a hybrid 

photovoltaic/wind system capable of meeting the energy 

demands of the CIT centre with minimal investment cost. 

Table 1 shows the monthly energy demand of the CIT 

center, with the peak load recorded at 68 kW. The average 

monthly wind speed and solar radiation are obtained from 

NASA meteorological data [18]. Table 2 displays the 

average monthly solar radiation received on a horizontal 

surface, while Table 3 shows the average monthly wind 

speeds at 50 meters above ground level. As explained in 

previous sections, if wind speeds are measured at a height 

other than the turbine hub height, adjustments must be 

made. In this study, wind towers with a hub height of 20 

meters are considered, requiring the measured wind speeds 

to be corrected. 

Simulation code was developed for different commercial 

models of wind turbines, photovoltaic cells, batteries, 

controllers, and inverters. Based on the characteristics of 

each product, the model selects the most optimal 

configuration for the microgrid. Tables 4 to 8 provide 

technical-economic data on wind turbines, photovoltaic 

cells, batteries, inverters, and controllers, respectively.

Table 1. Monthly Electrical Load Required by the CIT Centre 

Usage Type Required Load (kWh/month) 

Servers 190 

Computers 145 

Lighting 100 

Central HVAC 80 

Other Usage 35 

Total 550 

Table 2.Average Monthly Solar Radiation Received During the Day (kWh/m²/day) 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Solar Radiation (kWh/m²/day) 3.04 3.84 5.14 6.49 7.44 8.10 7.78 7.19 6.19 4.66 3.42 2.74 

Table 3. Average Monthly Wind Speeds at 50m and corrected at 20m (m/s) 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Wind Speed at 50m (m/s) 5.61 5.94 5.72 5.19 5.04 4.90 5.01 5.09 5.17 5.18 5.00 5.49 

Corrected Wind Speed at 20m (m/s) 4.92 5.21 5.02 4.56 4.42 4.30 4.39 4.46 4.53 4.54 4.39 4.81 

Table 4. Technical-Economic Information on Different Wind Turbines 

Model 
Rated Output 

(W) 

Investment Cost 

($) 

Installation Cost 

($) 

Maintenance Cost 

($) 

Energy Produced 

(kWh/year) 

SouthWest (Air X) 400 1248.985 74.6955 24.8985 506.27 

SouthWest (Whisper 

100) 
900 844.985 253.4955 84.4985 1411.16 
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SouthWest (Whisper 

200) 
1000 1000.00 300.00 100.00 2952.03 

SouthWest (Whisper 

500) 
3000 3076.391 922.9173 307.6391 8852.62 

Bornay (Inclin 6000) 6000 6783.701 2035.11 678.3701 21250.96 

Table 5. Technical-Economic Information of Different Solar Cells 

Model 
Characteristic 

Constant 

Output at 1000 

W/m² (W) 

Investment 

Cost ($) 

Installation 

Cost ($) 

Maintenance 

Cost ($) 

Energy Produced 

(kWh/year) 

Sharp ND-

250QCS 
0.153 250 240.00 108.00 6.00 489.31 

Hyundai HiS-
255MG 

0.160 255 229.50 103.275 5.7375 483.22 

Canadian Solar 

CS6X-300P 
0.156 300 249.00 112.05 6.225 602.10 

Table 6. Technical-Economic Information of Different Batteries 

Model Capacity (Ah) Investment Cost ($) Installation Cost ($) Replacement Cost ($) 

MK 8L16 370 1749.03 35.7 1749.03 

Surrette 12-Cs-11Ps 375 6851.425 139.825 6851.425 

Trojan T-105 225 991.27 20.23 991.27 

Table 7. Technical-Economic Information of Different Inverters 

Manufacturer Model 
Output Power 

(W) 

Investment 

Cost ($) 

Installation 

Cost ($) 

Maintenance 

Cost ($) 

Replacement 

Cost ($) 

Schneider 
Electric 

DR1524E 1500 350.00 7.15 1.95 350.00 

Schneider 

Electric 
XW6048 6000 1518.00 30.375 4.60 1518.00 

Table 8. Technical-Economic Information of Different Controllers 

Manufacturer Model 
Output Power 

(W) 

Investment Cost 

($) 

Installation Cost 

($) 

Maintenance Cost 

($) 

Replacement Cost 

($) 

Schneider 

Electric 

XW-MPPT-

60 
1500 284.00 4.96 0.7453 248.00 

Outback FM 80 2000 335.00 6.70 1.005 335.00 

Efficiency and Economic Assumptions: 

• Inverter Efficiency: 97% 

• Controller Efficiency: 97% 

• Wire and Cable Efficiency: 96% 

• Battery Efficiency: 90%

3. Results and Discussion 

This section compares the performance of the algorithms 

used in this study. The comparison is based on key factors: 

total investment cost, convergence speed, and the 

computation time required by each algorithm. Another 

factor examined is the amount of greenhouse gas emissions, 

which occur when the microgrid is connected to the main 

power grid and purchases electricity from it, thereby 

contributing to emissions. 

Figure 2 shows the variations in total investment cost for 

the off-grid scenario across the four algorithms—PSO, 

MPSO, CLPSO, and GEPSO. As can be seen, with its high 

convergence speed, the PSO algorithm quickly reaches a 

solution but suffers from premature convergence. As 

previously mentioned, PSO often gets trapped in local 

optima, resulting in unreliable outcomes. This issue is 

somewhat mitigated in the MPSO algorithm, where the 

optimal solution is reached after more iterations, albeit with 

a slight delay compared to PSO. The optimal solution in 

MPSO is found after more iterations than in the PSO 

algorithm. 

 

Figure 2. Comparison of convergence speed of algorithms in 

the off-grid scenario 

The GEPSO algorithm performs slightly better, identifying 

a more refined optimal solution after evaluating more 

iterations and solutions. However, the CLPSO algorithm 
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shows significant improvement, as seen in Figure 2, where 

convergence occurs much later—towards the final quarter 

of iterations—providing greater confidence in finding the 

global optimal solution. 

Additionally, the chart depicts the total investment cost for 

the CIT microgrid in the off-grid scenario for all four 

algorithms. As the graph illustrates, the CLPSO algorithm 

achieves the lowest investment cost compared to the other 

algorithms. GEPSO ranks second, followed by MPSO in 

third, and the standard PSO algorithm at the bottom. 

These trends are consistent in the grid-connected scenario 

as well. In this case, the CLPSO algorithm once again 

outperforms the others, both in avoiding premature 

convergence and in its superior ability to minimize total 

investment costs. This is clearly illustrated in Figure 3. 

 

Figure 3. Comparison of algorithm convergence speed in 

grid-connected mode 

The data in Table 9 indicates that the CLPSO algorithm 

achieves the lowest total investment cost in off-grid and 

grid-connected scenarios compared to the other three 

algorithms; specifically, in the off-grid scenario, CLPSO 

reduces the cost by 34.53%, 2.38%, and 2.30% compared to 

the PSO, MPSO, and GEPSO algorithms, respectively. In 

the grid-connected scenario, these reductions are 28.27%, 

12.07%, and 11.15%, respectively. 

For a clearer understanding of the data in Table 9, Figure 4 

provides a useful visual tool. As shown, the lowest 

investment cost across all three microgrid scenarios is 

achieved by the CLPSO algorithm. Additionally, it is 

evident that the total investment cost in the grid-connected 

scenario is significantly lower—approximately one-third—

compared to the off-grid scenario. This is primarily due to 

the absence of battery systems in the grid-connected 

microgrid. Batteries not only have a high initial purchase 

price but also incur substantial replacement costs 

throughout the microgrid's operational lifetime, which 

contributes to the higher overall investment costs in the off-

grid scenario. 

The duration of optimization computations performed by 

each of the four algorithms for the microgrid of the 

Communication and Information Technology Center, in 

both off-grid and grid-connected modes, is summarized in 

Table 10. By comparing these results, it was found that 

among the four algorithms, the CLPSO algorithm 

completed the computations in a shorter time than the 

others. Furthermore, while the general PSO algorithm does 

not achieve the lowest overall investment cost, it ranks 

second in computation time, followed by the GEPSO 

algorithm. The MPSO algorithm ranks fourth in both grid-

connected and off-grid modes. Figure 5 complements Table 

10 and is designed to enhance understanding. A quick 

glance at the figure clearly shows that the MPSO algorithm 

has the longest computation time, while the CLPSO 

algorithm, having completed the computations in the 

shortest time, stands out as the most efficient among the 

four. 

The next factor compared to the performance of the 

algorithms for microgrid optimization is their estimation of 

energy purchased from the main power grid. Electricity is 

only purchased when the microgrid is connected to the grid. 

As shown in Table 11, the PSO algorithm results in the 

highest amount of energy purchased from the grid, followed 

by the MPSO algorithm in second place and GEPSO in 

third. However, the CLPSO algorithm was able to reduce 

these values by 11.84%, 10.4%, and 6.91%, respectively, 

resulting in a microgrid design that purchases the least 

amount of energy from the main power grid.  

Figure 6 illustrates the amount of energy purchased from 

the main power grid by the four algorithms. This becomes 

particularly significant when considering greenhouse gas 

emissions and environmental pollutants. The more energy a 

renewable microgrid purchases from the main grid, the 

more it relies on thermal power plants, which are major 

contributors to environmental pollution. Therefore, this 

study estimated the amount of greenhouse gas emissions 

based on the energy purchased from the grid, using this 

information to help select the optimal algorithm. According 

to these calculations, the CLPSO algorithm, which 

purchases significantly less energy compared to the other 

algorithms, results in fewer pollutants being released into 

the atmosphere, making it the preferred algorithm from an 

environmental standpoint. 

 

Table 9. Comparison of Total Investment Costs in Off-Grid and Grid-Connected Scenarios Among the Algorithms Used 

Algorithm Off-Grid Scenario Grid-Connected Scenario 

PSO 49,038.92 14,259.62 

MPSO 32,885.40 11,631.50 

CLPSO 32,103.77 10,227.86 

GEPSO 32,859.31 11,511.54 
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Improvement of CLPSO compared to PSO (%) -34.53% -28.27% 

Improvement of CLPSO compared to MPSO (%) -2.38% -12.07% 

Improvement of CLPSO compared to GEPSO (%) -2.30% -11.15% 

 

Figure 4. Total investment cost chart in both off-grid and grid-connected scenarios for the algorithms used 

Table 10. Comparison of computation time in off-grid and grid-connected scenarios among the algorithms used 

Algorithm Off-Grid Scenario Grid-Connected Scenario 

PSO 94.50 93.78 

MPSO 196.89 340.37 

CLPSO 89.49 84.80 

GEPSO 115.53 108.61 

Improvement of CLPSO compared to PSO (%) -5.30% -9.57% 

Improvement of CLPSO compared to MPSO (%) -54.55% -75.08% 

Improvement of CLPSO compared to GEPSO (%) -22.53% -21.92% 

 

Figure 5. Computation time comparison in off-grid and grid-connected scenarios for the algorithms used 

Table 11. Comparison of the amount of energy purchased from the main power grid among the algorithms used 

Algorithm Grid-Connected Scenario 
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PSO 207.58 

MPSO 204.23 

CLPSO 183.00 

GEPSO 196.59 

Improvement of CLPSO compared to PSO (%) -11.84% 

Improvement of CLPSO compared to MPSO (%) -10.40% 

Improvement of CLPSO compared to GEPSO (%) -6.91% 

 

Figure 6. The amount of energy purchased from the main power grid in the algorithms used 

4. Conclusion 

In this study, the optimization of a hybrid microgrid 

consisting of photovoltaic units, wind turbines, and batteries 

for the Communication and Information Technology Center 

at Mansoura University in Egypt was conducted. The 

introduction and the need for the research were outlined in 

the first chapter. The second chapter provided a review of 

the theoretical foundations related to microgrids and 

renewable energy units, as well as an analysis of relevant 

studies. Chapter three introduced and discussed the PSO 

algorithm along with its variants, such as MPSO, CLPSO, 

and GEPSO. The mathematical modeling of the microgrid 

problem was also presented, followed by the formulation of 

objective functions and the simulation approach. In the 

fourth chapter, the results from the simulations using the 

four algorithms were analyzed and compared. 

The main findings of the project are summarized as 

follows: 

PSO and MPSO algorithms showed premature 

convergence when optimizing the CIT microgrid, resulting 

in suboptimal and less reliable solutions compared to those 

generated by the CLPSO and GEPSO algorithms. Notably, 

the hybrid microgrid’s total investment cost significantly 

decreased when it was connected to the main power grid. 

This result was consistent across all four algorithms. 

However, CLPSO demonstrated superior performance in 

reducing total investment costs in both grid-connected and 

off-grid scenarios, achieving a cost reduction of 34.53% and 

28.27% compared to PSO in off-grid and grid-connected 

modes, respectively. 

GEPSO provided better results than PSO and MPSO in 

minimizing total investment costs for both scenarios, 

although it lagged behind PSO in terms of computation 

time. CLPSO also outperformed all other algorithms by 

completing the optimization process in the shortest time, 

reducing computational time by 5.3% to 75% compared to 

the other algorithms. 

Additionally, CLPSO resulted in a significantly lower 

purchase of energy from the main power grid, cutting 

energy consumption by 11.84% compared to PSO. This 

reduced reliance on grid electricity led to fewer greenhouse 

gas emissions, making CLPSO the environmentally 

preferable option. 

In conclusion, CLPSO emerged as the most efficient 

optimization algorithm in terms of convergence speed, 

minimizing total investment costs and computation time, 

and reducing environmental pollutants. It outperformed 

PSO, MPSO, and GEPSO in all key metrics. Therefore, 

CLPSO is recommended as the optimal algorithm for 

solving microgrid optimization problems. 
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