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 Abstract: 

The present research aims to find a precise method for the wu-zhang system on scattered long 

waves, which can be a positive step for physical science in dealing with the structure of scattered 

waves and provide 3D diagrams for further studies of other sciences. 
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1. Introduction 

One of the most popular, widely used, and diverse 

mathematical equations is differential equations with partial 

derivatives, which sometimes attract the attention of many 

researchers and mathematical scientists who, by researching 

these equations and completing the research of others, arrive 

at remarkable methods and techniques that are a significant 

help to other sciences significantly in finding the answers to 

these equations. 

Among the methods used for differential equations with 

partial derivatives that have been obtained over many years 

and as a result of the experiences of many scientists, Rasul 

Shah et al. 2019, used the Laplace-Adomin decomposition 

method to get the solutions of partial differential equations. 

They investigated the third-order diffuse fraction [1] and 

also applied the traveling wave transform of the non-

differentiable type in 2019. Yang and Tenreiro Machado [2] 

discussed the exact solutions to the new nonlinear Burgers 

equation. In 2020, Touchent et al. applied a modified fixed 

subspace method to obtain the solution of partial differential 

equations with fractional derivatives of non-singular kernels 

[3], an attractive method for coupled systems of fractional 

partial differential equations which was proposed in 2020 

by Al-Smadi et al.[4]. Guo et al. (2020) conducted research 

on deep learning and physical constraints for solving partial 

differential equations [5]. In 2021, three common methods 

of two M-fractional differential equations were adopted by 

Siddique et al., who applied and compared them [6]. A new 

neural network method for solving ordinary and partial 

differential equations was used in 2021 by Schiassi et al. [7], 

a generalized operational matrix to obtain the solutions of 

differential equations. The fractional fraction was 

investigated several times in 2022 by Imran Talib et al. [8]. 

In 2023, Ozkan and Ozkan presented a discussion of the 

exact solutions of a type of differential equation [9] and 

many pieces of research that have been carried out in 

previous years or later by many researchers. 

Various forms of nonlinear partial differential equations 

have been studied for this purpose. For example, the 

nonlinear Schro¨ dinger equation [10], the Biswas- Milock 

equation [11], the Schro¨ dinger-Klein-Gordon (SKG) 

equation [12], the Dihrenfeld-Sokoloff equations [13], 

Tzitzika-type evolutionary equations [14], and many others. 

This research investigates and studies one of these PDEs 

that appears in the dynamics of long scattered waves, known 
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as the Wu Zhang model [15]. To solve this system, various 

powerful techniques and methods have been used: 

• In 2002, Chen et al., with the help of Jacobi elliptic 

functions [16], 

• In 2003, Zheng et al. and with the Extended tanh-

function method [17], 

• In 2011, Taghizadeh et al. and with the Reduced 

differential transform method [18], 

• In 2015, Eslami et al., with the First integral method 

[19], 

• In 2016, Inc et al. used two extended Tanh methods: the 

Hirota method [20] 

• In 2016, Xiong et al., using the Lie symmetry method 

[21], 

• In 2017, Mirzazadeh et al., by a method based on Lie 

symmetry [22], 

• In 2017, Koparan et al. with the Generalized 

Kudryashov Method [23], 

• In 2017, Kaplan et al., with the Exponential rational 

function method [24], 

• In 2019, by Awan et al., using the generalized (G0=G) 

expansion method [25], 

• In 2019, Yel and Baskonus, his colleague, modified the 

exp-expansion function method [26] and … 

In the current research, we use the generalized exponential 

function method that Ghanbari and Inc. studied in 2018 [27] 

to reach new and accurate solutions for the wu-zhang 

system. This generalized exponential function method has 

already been used by Ghanbari and several researchers for 

many equations [28-34]. The outline of this work is as 

follows: In the second part, the key concepts of the 

generalized exponential function method are introduced. In 

the third part, we use this method for the above system. The 

fourth section includes results and discussion. 

2. Demarche 

The method used in the present research is a method that 

has been widely used in solving many PDE schemes, which 

we now use to obtain the solutions of the Wu-Zhang system 

model. To illustrate the technique used in this research, let 

us presume a framework as conform below: 

𝐻(𝑋, 𝑋𝑥, 𝑋𝑡, 𝑋𝑥𝑥,· · · )  =  0  (1) 

Using the wave 𝑋(𝑡, ℎ)  =  𝑋(ζ), ζ =  𝑡 −  𝑘ℎ, Equation 

1 becomes a NODE equation 

𝐻( 𝑋(ζ),
𝑑𝑋

𝑑𝑋 , ,
𝑑2𝑋

𝑑𝑋2, , · · · )  =  0  (2) 

This technique is built using a hypothetical solution that 

can be displayed as follows: 

𝒲(ζ) = 𝒱0 + ∑ 𝒱i𝕃
𝑖(ζ)

𝑎0
𝑖=0 + ∑

𝒵𝑖

𝕃𝑖(ζ)

𝑎0
𝑖=0   (3) 

where  

ζ =
𝑚1 exp(𝛾1ζ)+𝑚2 exp(𝛾2ζ)

𝑚3 exp(𝛾3ζ)+𝑚4 exp(𝛾4ζ)
  (4) 

In Equation 4, 𝒱0, 𝒱i, 𝒵𝑖 (1 ≤ i ≤ 𝑎0), and in addition 

𝑚𝑖, 𝛾𝑖, (1 ≤ i ≤ 4), to determine the positive integer 

a0, we can use some well-known balance rules. By 

inserting Equation 3 in Equation 2, we get a 

polynomial. Finally, analytical solutions for 

Equation 1 are obtained. 

3. Solution of Equation 1 with Demarche 
Suggested in Section 2 

The Wu Zhang equation (WZ) studied in the present study 

is as follows: 

{

𝑢𝑡 + 𝑢𝑥𝑥 + 𝒲𝑢𝑦 + 𝑋𝑥 = 0

𝒲𝑡 + 𝑢𝒲𝑥 + 𝒲𝑦 + 𝑋𝑦 = 0

𝑋𝑡 + (𝑢𝑋)𝑥 + (𝒲𝑋)𝑦 +
1

3
(𝑢𝑥𝑥𝑥 + 𝑢𝑥𝑥𝑦 + 𝒲𝑥𝑥𝑦 + 𝒲𝑦𝑦𝑦) = 0

  (5) 

By changing the scale and reducing symmetry, Equation 5 

can be reduced to Equation 6: 

{
𝒲𝑡 + 𝒲𝒲𝑥 + 𝑋𝑥 = 0

𝑋𝑡 + 𝑋𝒲𝑥 + 𝒲𝑋𝑥 +
1

3
𝒲𝑥𝑥𝑥 = 0

  (6) 

In this section, we want to find the exact solutions of the 

equation (WZ). For this purpose, from the traveling wave 

transformation 𝒲(𝑡, ℎ) = 𝒲(ζ), 𝑋(𝑡, ℎ)  =  𝑋(ζ), ζ =
 𝑡 −  𝑘ℎ, system 6 is reduced to the following ODE system: 

−𝑐𝒲′ + 𝒲𝒲′ + 𝑋′
= 0  (7) 

−𝑐𝑋′
+ 𝑋𝒲′ + 𝒲𝑋′

+
1

3
𝒲′′′ = 0  (8) 

By integrating Equation 8 once and substituting X into 

Equation 9, we find: 

(−3𝑐2 + 3𝛼)𝒲′ + 9𝑐𝒲𝒲′ −
9

2
𝒲𝒲′ + 𝒲′′′ = 0  (9) 

𝒲′′ − 𝛽 − (3𝑐2 − 3𝛼)𝒲 −
9

2
𝑐𝒲2 +

3

2
𝒲3 = 0  (10) 

According to the balance principle, the value of a0 is 1, so: 

𝒲(ζ) = 𝒱0 + 𝒱1𝕃(ζ) +
𝒵1

𝕃(ζ)
  (11) 

That 𝕃(ζ) is obtained according to Equation 4. 

Clique 1: catching [𝑚1 𝑚2 𝑚3 𝑚4] =
[−1 1 1 1] and [𝛾1 𝛾1 𝛾1 𝛾1] =
[1 −1 1 −1] in Equation 4 render:  

𝕃(ζ) = −𝑡𝑎𝑛ℎζ  (12) 

Various anthologies are obtained as follows: 

Anthology 1-1: 

𝛼 = −
𝑐2

2
+

2

3
, 𝛽 = −

(3𝑐2)×𝑐

2
, 𝒱0 = 𝑐,  

𝒱1 =
2√3

3
, 𝒵1 = 0  

(13) 

By substituting the values of the obtained parameters 

Equation 13 in Equation 11, the following wave solution is 

obtained: 
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𝒲 = 𝑐 −
2√3tanh (ζ)

3
  (14) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = 1 is presented in Figure 1. 

 

Figure 1. The graphical diagram related to the solution of 

Anthology 1-1 with c=1 

Anthology 1-2: 

𝛼 = −
𝑐2

2
+

8

3
, 𝛽 = −

(3𝑐2+16)×𝑐

2
, 𝒱0 = 𝑐,   

𝒱1 =
2√3

3
, 𝒵1 =

2√3

3
  

(15) 

By substituting the values of the obtained parameters 

Equation 15 in Equation 11, the following wave solution is 

obtained: 

𝒲(ζ) =
2√3tanh (ζ)2+3𝑐 tanh(ζ)−2√3

3 tanh(ζ)
  (16) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = 2 is presented in Figure 2. 

 

Figure 2. The graphical diagram related to the solution of 

Anthology 1-2 with c=2 

Anthology 1-3: 

𝛼 = −
𝑐2

2
−

4

3
, 𝛽 = −4𝑐

3

2
𝑐3, 𝒱0 = 𝑐,   

𝒱1 =
2√3

3
, 𝒵1 = −

2√3

3
  

(17) 

By substituting the values of the obtained parameters 

Equation 17 in Equation 11, the following wave solution is 

obtained: 

𝒲(ζ) =
−2√3tanh (ζ)2+3𝑐 tanh(ζ)+2√3

3 tanh(ζ)
  (18) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = 2 is presented in Figure 3. 

 

Figure 3. The graphical diagram related to the solution of 

Anthology 1-3 with c=2 

Anthology 1-4: 

𝛼 = −
𝑐2

2
+

2

3
, 𝛽 = −

(3𝑐2−4)×𝑐

2
, 𝒱0 = 𝑐,   

𝒱1 = 0, 𝒵1 = −
2√3

3
  

(19) 

By substituting the values of the obtained parameters 

Equation 19 in Equation 11, the following wave solution is 

obtained: 

𝒲(ζ) =
3 tanh(ζ)−2√3

3 tanh(ζ)
  (20) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = 3 is presented in Figure 4. 

 

Figure 4. The graphical diagram related to the solution of 

Anthology 1-4 with c=3 

Clique 2: catching [𝑚1 𝑚2 𝑚3 𝑚4] =
[𝑖 −𝑖 1 1] and [𝛾1 𝛾1 𝛾1 𝛾1] = [𝑖 −𝑖 𝑖 −𝑖] 
in Equation 4 render: 

𝕃(ζ) = −𝑡𝑎𝑛ℎζ  (21) 

Anthology 2-1: 

𝛼 = −
𝑐2

2
−

2

3
, 𝛽 = −

(3𝑐2−4)×𝑐

2
, 𝒱0 = 𝑐,   (22) 
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𝒱1 = −
2√3

3
, 𝒵1 = 0  

By substituting the values of the obtained parameters 

Equation 22 in Equation 11, the following wave solution is 

obtained: 

𝒲 = 𝑐 −
2√3tanh (ζ)

3
  (23) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = 4 is presented in Figure 5. 

 

Figure 5. The graphical diagram related to the solution of 

Anthology 2-1 with c=4 

Anthology 2-2: 

𝛼 = −
𝑐2

2
−

8

3
, 𝛽 = −8𝑐 −

3

2
𝑐3, 𝒱0 = 𝑐,   

𝒱1 = −
2√3

3
, 𝒵1 =

2√3

3
  

(24) 

By substituting the values of the obtained parameters 

Equation 24 in Equation 11, the following wave solution is 

obtained: 

𝒲(ζ) =
2√3tanh (ζ)2+3𝑐 tanh(ζ)−2√3

3 tanh(ζ)
  (25) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = 5 is presented in Figure 6. 

 

Figure 6. The graphical diagram related to the solution of 

Anthology 2-2 with c=5 

Anthology 2-3: 

𝛼 = −
𝑐2

2
+

4

3
, 𝛽 = 4𝑐 −

3

2
𝑐3, 𝒱0 = 𝑐,   (26) 

𝒱1 = −
2√3

3
, 𝒵1 = −

2√3

3
  

By substituting the values of the obtained parameters 

Equation 26 in Equation 11, the following wave solution is 

obtained: 

𝒲 =
2√3tanh (ζ)2+3𝑐 tanh(ζ)+2√3

3 tanh(ζ)
  (27) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = 5 is presented in Figure 7. 

 

Figure 7. The graphical diagram related to the solution of 

Anthology 2-3 with c=5 

Anthology 2-4: 

𝛼 = −
𝑐2

2
−

2

3
, 𝛽 = −

(3𝑐2+4)×𝑐

2
, 𝒱0 = 𝑐,   

𝒱1 = 0, 𝒵1 = −
2√3

3
  

(28) 

By substituting the values of the obtained parameters 

Equation 28 in Equation 11, the following wave solution is 

obtained: 

𝒲(ζ) =
3 tanh(ζ)+2√3

3 tanh(ζ)
  (29) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = 3 is presented in Figure 8. 

 

Figure 8. The graphical diagram related to the solution of 

Anthology 2-4 with c=1 

Clique 3: catching [𝑚1 𝑚2 𝑚3 𝑚4] =
[1 1 −1 1] and [𝛾1 𝛾1 𝛾1 𝛾1] =
[1 −1 1 −1] in Equation 4 render: 
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𝕃(ζ) = −𝑐𝑜𝑡ℎζ  (30) 

Anthology 3-1: 

𝛼 = −
𝑐2

2
+

2

3
, 𝛽 = −

(3𝑐2−4)×𝑐

2
, 𝒱0 = 𝑐,   

𝒱1 =
2√3

3
, 𝒵1 = 0  

(31) 

By substituting the values of the obtained parameters 

Equation 31 in Equation 11, the following wave solution is 

obtained: 

𝒲(ζ) = 𝑐 −
2√3 coth(ζ)

3
  (32) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = −1 is presented in Figure 9. 

 

Figure 9. The graphical diagram related to the solution of 

Anthology 3-1 with c=-1 

Anthology 3-2: 

𝛼 = −
𝑐2

2
+

8

3
, 𝛽 = 8𝑐 −

3

2
𝑐3, 𝒱0 = 𝑐,   

𝒱1 =
2√3

3
, 𝒵1 =

2√3

3
  

(33) 

By substituting the values of the obtained parameters 

Equation 33 in Equation 11, the following wave solution is 

obtained: 

𝒲 = 𝑐 −
2√3coth (ζ)

3
  (34) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = 3 is presented in Figure 10. 

 

Figure 10. The graphical diagram related to the solution of 

Anthology 3-2 with c=3 

Anthology 3-3: 

𝛼 = −
𝑐2

2
−

4

3
, 𝛽 = −4𝑐 −

3

2
𝑐3, 𝒱0 = 𝑐,   

𝒱1 = −
2√3

3
, 𝒵1 =

2√3

3
  

(35) 

By substituting the values of the obtained parameters 

Equation 35 in Equation 11, the following wave solution is 

obtained: 

𝒲(ζ) =
2√3coth (ζ)2+3𝑐 coth(ζ)+2√3

3 coth(ζ)
  (36) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = 5 is presented in Figure 11. 

 

Figure 11. The graphical diagram related to the solution of 

Anthology 3-3 with c=5 

Anthology 3-4: 

𝛼 = −
𝑐2

2
+

2

3
, 𝛽 = −

(3𝑐2−4)×𝑐

2
, 𝒱0 = 𝑐,   

𝒱1 = 0, 𝒵1 =
2√3

3
  

(37) 

By substituting the values of the obtained parameters 

Equation 37 in Equation 11, the following wave solution is 

obtained: 

𝒲(ζ) =
3𝑐 coth(ζ)−2√3

3 coth(ζ)
  (38) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = 2 is presented in Figure 12. 

 

Figure 12. The graphical diagram related to the solution of 

Anthology 3-4 with c=5 
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Clique 4: catching [𝑚1 𝑚2 𝑚3 𝑚4] =
[−1 0 1 1] and [𝛾1 𝛾1 𝛾1 𝛾1] = [0 0 0 1] 
in Equation 4 render: 

𝕃(ζ) = −
1

1+𝑒ζ  (39) 

Anthology 4-1: 

𝛼 = −
𝑐2

2
−

1

3
, 𝛽 = −

(3𝑐2+2)×𝑐

2
, 𝒱0 = 𝑐,   

𝒱1 = 1, 𝒵1 = −1  
(40) 

By substituting the values of the obtained parameters 

Equation 40 in Equation 11, the following wave solution is 

obtained: 

𝒲(ζ) =
𝑒2ζ+(𝑐+2)𝑒ζ+𝑐

1+𝑒ζ   (41) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = 3 is presented in Figure 13. 

 

Figure 13. The graphical diagram related to the solution of 

Anthology 4-1 with c=3 

Anthology 4-2: 

𝛼 = 𝛼, 𝛽 = −3𝑐2𝒱0 +
9

2
𝑐𝒱0

2 −
3

2
𝑐𝒱0

3 + 3𝛼
9

2
𝑐𝒱0

2 ,  

𝒱0 = 𝑐, 𝒱1 = 1, 𝒵1 = 0   
(42) 

By substituting the values of the obtained parameters 

Equation 42 in Equation 11, the following wave solution is 

obtained: 

𝒲(ζ) =
𝑐𝑒ζ+1

1+𝑒ζ   (43) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = 1 is presented in Figure 14. 

 

Figure 14. The graphical diagram related to the solution of 

Anthology 4-2 with c=1 

Anthology 4-3: 

𝛼 = −
𝑐2

2
−

−1

3
, 𝛽 = −

(3𝑐2+2)×𝑐

2
, 𝒱0 = 𝑐,   

𝒱1 = √−2𝑒ζ −
2

3
, 𝒵1 = 0  

(44) 

By substituting the values of the obtained parameters 

Equation 44 in Equation 11, the following wave solution is 

obtained: 

𝒲(ζ) =
3𝑐𝑒ζ+33𝑐−√−18𝑒ζ−6

3+3𝑒ζ   (45) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = 2 is presented in Figure 15. 

 

Figure 15. The graphical diagram related to the solution of 

Anthology 4-3 with c=2 

Anthology 4-4: 

𝛼 = −
𝑐2

2
−

1

3
, 𝛽 = −

(3𝑐2+2)×𝑐

2
, 𝒱0 = 𝑐,   

𝒱1 = 0, 𝒵1 = −1  
(46) 

By substituting the values of the obtained parameters 

Equation 46 in Equation 11, the following wave solution is 

obtained: 

𝒲(ζ) = 𝑐 + 1 + 𝑒ζ  (47) 

The graphical diagram related to the solution of the wave 

𝒲(ζ) while 𝑐 = 0 is presented in Figure 16. 

 

Figure 16. The graphical diagram related to the solution of 

Anthology 4-4 with c=0 
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4. Conclusion 

At the end of this paper, we were able to reach several exact 

solutions for the Wu- zhang system using the generalized 

exponential function method. It can certainly be said that the 

answers are new, logical, and practical, which promises 

special progress in the basic sciences and will be a great help 

to these sciences by using this research as the method is new 

and there is no special complexity to reach the answer. 
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