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 Abstract: 

Identifying structural damages has been a crucial research topic in civil engineering over the past 

few decades. Numerical modeling methods are of particular interest for damage detection because 

they provide more information. The accuracy of modeling results can be impacted by errors in 

modeling the mass of non-structural elements. This study is focused on assessing the effects of 

the mass of non-structural components on the detection of current damages. An integrated neural 

network approach was used to study a truss bridge as a widely used structure. It was possible to 

detect damaged members with high accuracy using the artificial neural network trained with the 

results of the finite element model. According to the results, the introduced method accurately 

detects damage despite modeling errors associated with non-structural elements' mass. 
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1. Introduction 

Structures are subject to deterioration throughout their 

lifespan. Damage to structures can be defined as any change 

in the material or geometric characteristics of the structure 

that reduces its performance. It is possible to assess 

structural conditions and detect potential failures of 

components early through structural health monitoring, 

which is an effective method for increasing structure 

reliability and resilience. Once the damage has been 

identified, the main goal is to repair it. 

A structural response-based damage detection method falls 

into two categories: static identification methods and 

dynamic identification methods. Static identification 

methods determine the changes in structural parameters by 

measuring the strain or displacement response under certain 

static loads. Alternatively, dynamic identification methods 

use a structure's dynamic characteristics, determined by its 

reaction to some excitation force, to detect damage. The 

vibration-based structural damage identification field has 

received extensive research attention in recent decades [1-

6]. 

Natural frequencies and mode shapes are of particular 

interest among dynamic characteristics for model updating 

since they are easily interpreted. Using the difference 

between two mode shapes to detect damage, Wolff and 

Richardson [7] introduced the modal assurance criterion 

(MAC) to estimate their correlation. Pandey et al. [8] used 

modal curvature to locate damage in cases where MAC 

failed. An accurate damage index was developed by Kim 

and Stubbs [9] based on modal strain energy. Salawu [10] 

provides a comprehensive overview of methods for 

detecting structural damage through frequency changes. 

The response function method was developed by Lin and 

Ewin [11] to update mass and stiffness matrices using the 

real part of the Frequency Response Function (FRF). Using 

a pseudolinear sensitivity equation, Shadan et al. correlated 

the changes in FRFs to changes in structural parameters 

[12]. It utilizes a quasi-linear sensitivity equation to reduce 

the negative impacts of incomplete measurement data. 

Additionally, the method was experimentally validated with 

free-free beam tests [13]. 

Artificial Neural Networks (ANNs) are most commonly 

used to identify damage [1, 4, 14-16]. A pattern recognition 

technique can be used to predict structural damages. When 

it comes to structural systems, for instance, a precisely 

trained neural network can identify the occurrence, location, 

and severity of damage. There are several damage detection 

methods that rely on identifying certain modal parameters 

in structural systems to extract features. Natural frequencies 
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and mode shapes are among the most commonly used 

parametric characteristics. According to Mehrjoo et al. [17], 

modal characteristics were extracted from acceleration 

response and used as damage-sensitive features in an ANN-

based damage detection system on a simple truss bridge and 

the Louisville Bridge truss. To identify and localize damage, 

an ANN with a single hidden layer was used. Each neuron's 

value indicates the percentage of damage. Using a 

numerical model in conjunction with an ANN (with five 

input neurons and five output neurons), Yuen and Lam [18] 

detected damage based on the modal parameters of a simple 

five-story structure. Based on the FRFs of the structure, 

Fallahian et al. [4] developed a new pattern recognition-

based damage detection method. As an authoritative feature 

extraction method, principal component analysis (PCA) is 

employed to reduce the dimension of the measured FRF 

data. Then, they used deep neural networks and sparse 

coding trained with the extracted patterns to detect damage. 

Using the PCA and ensemble couple sparse coding methods, 

Vahedi et al. [1] proposed an algorithm for damage 

identification in structures with flexible bases. 

Non-structural components are usually not considered in 

finite element models for damage detection. Although non-

structural components have a limited effect on the stiffness 

and mass of structures, they are still important. Vibration-

based model updating techniques must consider this 

inaccuracy since the dynamic parameters of structures are 

influenced by stiffness and mass. Several studies have 

shown that non-structural components influence the 

dynamic behavior of structures [19-24]. Devin and Fanning 

[19] examine how non-loading bearing elements contribute 

to dynamic response. As part of this study, the ambient 

vibration response of a new structure was recorded at 

different stages of construction. As a result of the addition 

of non-load-bearing facades and partitions, the vibration 

modes changed, and the natural frequencies increased. An 

operational modal analysis of a reinforced concrete frame 

building under construction was performed by Devin and 

Fanning [25] and indicated that cladding panels and internal 

partitions significantly affected the dynamic parameters. By 

considering the effect of non-structural components, 

Jahangiri et al. [24] reported that natural frequency and 

damping ratio values have significantly increased during 

construction. Ventura et al. [26 and 27] and Turek et al. [28] 

studied the effect of non-structural elements on a global 

building response using the structural response induced by 

ambient vibrations. Li et al. [29] determined that a 79-story 

building's natural frequencies were higher than those 

calculated from the FE model, concluding that non-

structural components contributed to this difference. 

An artificial neural network and dynamic data extracted 

from a finite element model of a truss bridge were used in 

this study to detect damage in that bridge. Due to the fact 

that the mass of non-structural components that are not 

modeled affects the dynamic properties of the model, the 

effect of this issue has been assessed. For implementing this 

concept, each neuron's value indicates the percentage of 

damage, while the response was the structure’s dynamic 

characteristics for each case of damage. During the training 

of the network, the weights of the non-structural elements 

were not taken into account, as is typical for updating 

structural models. However, this network was later used for 

detecting structures in real-life cases that include the mass 

of non-structural elements, making the process more 

challenging. This study evaluates the presented method by 

detecting damage to a 2D truss consisting of 29 elements. 

Since the bridge's deck floor is considered non-structural, 

its mass is not considered when training the neural network. 

The method was able to accurately identify the damaged 

element as well as the severity of the damage. 

2. The Impact of Non-Structural Elements on 
the Dynamic Behavior of Bridges 

The dynamic behavior of structures is determined by the 

stiffness and mass of elements. Static response, however, 

depends only on elemental stiffness. In other words, 

modeling structures without taking into account non-

structural elements has a greater impact on their dynamic 

response. In a previous study, the authors found that 

ignoring non-structural elements led to significant changes 

in dynamic properties [30]. 

As noted by Shirazi et al. [30], the weight of the non-

structural elements of a bridge, such as the deck and 

pavement, is added to their related elements, and its impact 

on its natural frequency is explored. An illustration of the 

effects of non-structural components on the frequency 

response function can be found in Figure 1. As can be seen 

in the graph, the extra mass added by the non-structural 

elements leads to much closer spacing between the lower 

modes. It is worth noting that a vibration-based damage 

detection method faces difficulties when modes are closely 

spaced [3]. 

Table 1 compares the natural frequencies of a structure 

with and without non-structural elements' mass to examine 

these changes in detail. Clearly, this weight has a great 

impact and cannot be ignored. 

Table 1. The first ten frequencies of the structure [30] 

Mode 

No. 

With the mass of 
non-structural 

components (Hz) 

Without the mass of 
non-structural 

components (Hz) 

Difference 

percent (%) 

1 6.58 16.66 59.71 

2 14.96 35.95 61.75 

3 28.00 63.78 63.74 

4 31.37 89.89 54.37 

5 45.12 120.53 57.46 

6 52.47 156.71 52.44 

7 71.28 158.45 64.61 

8 74.46 176.41 62.27 

9 84.36 208.77 60.59 

10 91.16 274.12 52.12 
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Figure 1. The changes in the frequency response function [30] 

3. Artificial Neural Network (ANN) 

A neural network is a paradigm for processing information 

inspired by the brain. ANNs can be configured and trained 

through the nonlinear parameterized mapping between the 

input and the output sets via their neurons, just as the brain 

has multiple neurons working together to process 

information. The main advantage of ANNs is that they can 

be applied to problems without an algorithmic solution or 

where it would be too complex to find an algorithmic 

solution. ANNs also possess other capabilities for real-time 

applications, such as self-adaptability, generalization, 

abstraction, and suitability. Recently, they have been widely 

used to estimate the severity and location of damage. 

This study utilized an ANN method based on a back 

propagation learning algorithm. For a network to meet its 

target by minimizing the mean square error between the 

actual and predicted vectors, various internal weights and 

biases are adjusted during the network training process. 

Using the gradient search technique, this minimization is 

achieved. Even inputs that are not included in the network 

training can be accurately predicted by a neural network that 

has been appropriately trained. The Levenberg-Marquardt 

(LM) algorithm is considered to be one of the fastest and the 

most efficient training algorithms. According to Fausett 

[31], the back-propagation architecture is sufficient with 

one hidden layer for most applications; therefore, only one 

hidden layer is considered. In designing a neural network, it 

is important to determine the number of hidden layers and 

neurons within each hidden layer [32]. Seibi and Alawi [32] 

suggested that the following formula be used to calculate 

the number of neurons for a single hidden layer if the 

number of training pairs is known: 

𝑛 = 𝜃 × (𝑁ℎ × (𝑚 + 1) + 𝑝 × (𝑁ℎ + 1))  (1) 

where 𝑛 is the number of possible training pairs, 𝜃 is a 

constant coefficient greater than one, 𝑁ℎ is the number of 

neurons in a hidden layer that are used in the network with 

a hidden layer, and 𝑚 and 𝑝 express the number of input and 

output nodes, respectively. 

In this study, a global vibration parameter is used as input 

to an ANN to predict the location and severity of the 

damage. The global parameter refers to a change in a 

structure's natural frequencies. Finite element analysis has 

been used to estimate the parameters based on undamaged 

and damaged structures’ free vibration dynamic behavior. 

Training an ANN to establish the relationship between 

inputs and outputs is necessary. An FE model is used to 

generate a series of random damage cases during the 

training phase. By reducing the stiffness parameter of 

selected elements, damage cases are idealized. 

4. Numerical Study 

This study considered an asymmetric 2D truss bridge 

consisting of 29 elements. Figure 2 illustrates the geometry, 

and Table 2 lists the mechanical properties of the truss 

elements.

 

Figure 2. The asymmetric 2D truss 
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Table 2. The mechanical properties of the elements 

Modulus of elasticity 200 GPa 

Cross-sectional area 0.0018 m2 

Density 7800 kg/m3 

A database with known damage cases and their natural 

frequencies should be created to train the neural network. 

As part of this study, numerous damages were applied to 

each structural element (Table 3), and corresponding natural 

frequencies were measured. As this network is designed to 

identify single-element damages, only one element is 

damaged in the damage cases of the database. Members 

experienced 15-45% damage in 1% increments, and 29 

natural frequencies were calculated. A total of 899 cases 

were obtained by considering these 31 damage increments 

for each element. 

Using Equation 1, 𝑁ℎ will be 6.81, and hence, 7 neurons 

are considered. As a result of this architecture, the 

regression coefficient would be 𝑅 = 0.4856, which is an 

unacceptable level of accuracy. Using the test and error 

procedure, 50 neurons make an accurate result, resulting in 

a R  value of 0.99999. 

4.1. Results and Discussion 

The study considers non-structural components to simulate 

a real case. It is assumed that the bridge's deck floor is not 

structural. Therefore, the effect of not including this mass in 

finite element modeling is taken into account by adding its 

error to the related elements. Hence, two percent of the 

deck's elemental mass is assigned to its nodes as random 

error, distributed uniformly. 

Four damage cases are presented to test the reliability of 

the trained network. Every damage case involves damage to 

one element whose severity was not taken into account in 

the network training process. Table 4 shows that the 

imposed damages are decimal numbers, in contrast to the 

steps involved in adding damage during database extraction. 

Figures 3-a to 3-d demonstrate the network’s accuracy in 

identifying the given damage scenarios listed in Table 4. 

The network can locate the damaged element and evaluate 

the damage severity with decimal numbers despite being 

trained with damage patterns with integer numbers. Even 

when the mass error was added to the elements, the 

network's ability to detect damaged elements remained the 

same. Moreover, as part of the damage detection process, 

the network could identify whether the frequency variations 

were due to combined stiffness and mass error damage or 

solely to mass error.

Table 3. The first 31 cases for element 1 

Damage % Element no. … Damage % Element no. Damage % Element no. 

intact 29 … intact 2 15% 1 Case 1 

intact 29 … intact 2 16% 1 Case 2 

intact 29 … intact 2 17% 1 Case 3 

. 

. 

. 
29 …   

. 

. 

. 
1 

. 

. 

. 

intact 29 … intact 2 45% 1 Case 31 

Table 4. The damage scenarios 

Case4 Case3 Case2 Case1 

Damage 
percent 

Element 
number 

Damage 
percent 

Element 
number 

Damage 
percent 

Element 
number 

Damage 
percent 

Element 
number 

39.2% 23 27.3% 13 33.8% 7 24.75% 1 

 

 
(a) case 1 
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(b) Case 2 

 
(c) Case 3 

 
(d) Case 4 

Figure 3. Comparison between the predicted damage with and without mass errors 

4.2. Results' Accuracy Indices 

The accuracy of damage detection is evaluated using some 

accuracy indices in order to investigate the effect of mass 

error in detail. To measure the error of not detecting 

damaged elements, Damage Missing Error (DME) is 

utilized. The definition of DME is as follows: 

𝐷𝑀𝐸 =
1

𝑁𝑇
∑ 휀𝑡

𝐼𝑁𝑇
𝑡=1 , (0 ≤ 𝐷𝑀𝐸 ≤ 1)  (2) 

In the above equation, NT is the correct number of 

damaged elements. If the damaged element is detected, 휀𝑡
𝐼  

equals 0; otherwise, it equals 1. As a result, DME equals 0 

if all the damaged elements are detected. This study 

considered a damaged element to be detected if the damage 

in an element of the structure was predicted with an error of 

40%. 

FAE (False Alarm Error) refers to the error caused by an 

element being incorrectly identified as damaged. 
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𝐹𝐴𝐸 =
1

𝑁𝐹
∑ 휀𝑃

𝐼𝐼𝑁𝐹
𝑃=1 , (0 ≤ 𝐹𝐴𝐸 ≤ 1)  (3) 

where NF gives the number of detected damaged elements. 

If an element's damage prediction is correct, 휀𝑝
𝐼𝐼 equals 0; 

otherwise, it equals 1. The FAE value of 0 indicates that all 

elements detected as damaged are actually damaged. The 

study considered damaged elements whose prediction errors 

exceeded 10%. 

There is a term called Mean Sizing Error (MSE) that 

describes the difference between damages as predicted in 

analytical model parameters 𝛿𝑃𝑒
𝑝

 and damages as observed 

in real structure parameters 𝛿𝑃𝑒
𝑎. 

𝑀𝑆𝐸 =
1

𝑁
∑ |𝛿𝑃𝑒

𝑎 − 𝛿𝑃𝑒
𝑝

|𝑁
𝑒=1 , (0 ≤ 𝑀𝑆𝐸 ≤ ∞)  (4) 

Undoubtedly, lower values in the three introduced indices 

indicate more accurate outcomes. 

Table 5 shows the accuracy indices calculated from 

Equations 2 to 4 based on the results. As shown by the 

indices values, the network can detect the damaged element 

and its severity with sufficient precision. Due to the addition 

of mass errors, the indices are slightly higher but still 

acceptable. According to DME values, there are no missing 

damaged elements, but FAE values indicate that some 

elements have slight damage as a result of mass error 

additions.

Table 5. The values of accuracy indices 

Case4 Case3 Case2 Case1 

With mass 
variation 

Without 
mass 

With mass 
variation 

Without 
mass 

With mass 
variation 

Without 
mass 

With mass 
variation 

Without 
mass 

 

0 0 0 0 0 0 0 0 DME 

0.034483 0 0.068966 0 0.068966 0 0.034483 0 FAE 

0.03197679 2.3E-04 0.060297 0.000204 0.003235 0.000197 0.014367 0.000557 MSE 

5. Conclusions 

This study aimed to determine if the mass of non-structural 

components affects damage detection. A truss bridge 

damage detection system was developed using an artificial 

neural network and dynamic data extracted from a finite 

element model. When developing the network, the weights 

of the non-structural elements were not taken into account. 

A challenge arose when this network was later used to detect 

structures with mass derived from non-structural elements. 

A numerical study is conducted using a 2D truss 29-element 

with the bridge deck floor as non-structural components. 

Despite modeling errors associated with the mass of non-

structural elements, the introduced method accurately 

detects damage. In addition, a few accuracy indices were 

presented and examined to demonstrate the precision of the 

method. 
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